| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgss2 | Structured version Visualization version Unicode version | ||
| Description: A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgss2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 |
. . . . 5
| |
| 2 | uniexg 6955 |
. . . . . 6
| |
| 3 | 2 | adantr 481 |
. . . . 5
|
| 4 | 1, 3 | eqeltrrd 2702 |
. . . 4
|
| 5 | uniexb 6973 |
. . . 4
| |
| 6 | 4, 5 | sylibr 224 |
. . 3
|
| 7 | tgss3 20790 |
. . 3
| |
| 8 | 6, 7 | syldan 487 |
. 2
|
| 9 | eltg2b 20763 |
. . . . . . 7
| |
| 10 | 6, 9 | syl 17 |
. . . . . 6
|
| 11 | elunii 4441 |
. . . . . . . . 9
| |
| 12 | 11 | ancoms 469 |
. . . . . . . 8
|
| 13 | biimt 350 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 17 |
. . . . . . 7
|
| 15 | 14 | ralbidva 2985 |
. . . . . 6
|
| 16 | 10, 15 | sylan9bb 736 |
. . . . 5
|
| 17 | ralcom3 3105 |
. . . . 5
| |
| 18 | 16, 17 | syl6bb 276 |
. . . 4
|
| 19 | 18 | ralbidva 2985 |
. . 3
|
| 20 | dfss3 3592 |
. . 3
| |
| 21 | ralcom 3098 |
. . 3
| |
| 22 | 19, 20, 21 | 3bitr4g 303 |
. 2
|
| 23 | 8, 22 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 |
| This theorem is referenced by: metss 22313 relowlssretop 33211 relowlpssretop 33212 |
| Copyright terms: Public domain | W3C validator |