MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg2b Structured version   Visualization version   Unicode version

Theorem eltg2b 20763
Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg2b  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, V, y

Proof of Theorem eltg2b
StepHypRef Expression
1 eltg2 20762 . 2  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) ) )
2 simpl 473 . . . . . . 7  |-  ( ( x  e.  y  /\  y  C_  A )  ->  x  e.  y )
32reximi 3011 . . . . . 6  |-  ( E. y  e.  B  ( x  e.  y  /\  y  C_  A )  ->  E. y  e.  B  x  e.  y )
4 eluni2 4440 . . . . . 6  |-  ( x  e.  U. B  <->  E. y  e.  B  x  e.  y )
53, 4sylibr 224 . . . . 5  |-  ( E. y  e.  B  ( x  e.  y  /\  y  C_  A )  ->  x  e.  U. B )
65ralimi 2952 . . . 4  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A )  ->  A. x  e.  A  x  e.  U. B )
7 dfss3 3592 . . . 4  |-  ( A 
C_  U. B  <->  A. x  e.  A  x  e.  U. B )
86, 7sylibr 224 . . 3  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A )  ->  A  C_  U. B )
98pm4.71ri 665 . 2  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) )
101, 9syl6bbr 278 1  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   U.cuni 4436   ` cfv 5888   topGenctg 16098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topgen 16104
This theorem is referenced by:  tg2  20769  tgcl  20773  eltop2  20779  tgss2  20791  basgen2  20793  2ndc1stc  21254  eltx  21371  tgqioo  22603  isfne2  32337
  Copyright terms: Public domain W3C validator