MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperpexlem3 Structured version   Visualization version   Unicode version

Theorem colperpexlem3 25624
Description: Lemma for colperpex 25625. Case 1 of theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p  |-  P  =  ( Base `  G
)
colperpex.d  |-  .-  =  ( dist `  G )
colperpex.i  |-  I  =  (Itv `  G )
colperpex.l  |-  L  =  (LineG `  G )
colperpex.g  |-  ( ph  ->  G  e. TarskiG )
colperpex.1  |-  ( ph  ->  A  e.  P )
colperpex.2  |-  ( ph  ->  B  e.  P )
colperpex.3  |-  ( ph  ->  C  e.  P )
colperpex.4  |-  ( ph  ->  A  =/=  B )
colperpexlem3.1  |-  ( ph  ->  -.  C  e.  ( A L B ) )
Assertion
Ref Expression
colperpexlem3  |-  ( ph  ->  E. p  e.  P  ( ( A L p ) (⟂G `  G
) ( A L B )  /\  E. t  e.  P  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( C I p ) ) ) )
Distinct variable groups:    .- , p, t    A, p, t    B, p, t    C, p, t    G, p, t    I, p, t    L, p, t    P, p, t    ph, p, t

Proof of Theorem colperpexlem3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 colperpex.p . . . 4  |-  P  =  ( Base `  G
)
2 colperpex.d . . . 4  |-  .-  =  ( dist `  G )
3 colperpex.i . . . 4  |-  I  =  (Itv `  G )
4 colperpex.l . . . 4  |-  L  =  (LineG `  G )
5 eqid 2622 . . . 4  |-  (pInvG `  G )  =  (pInvG `  G )
6 colperpex.g . . . . 5  |-  ( ph  ->  G  e. TarskiG )
76ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  G  e. TarskiG )
8 eqid 2622 . . . 4  |-  ( (pInvG `  G ) `  p
)  =  ( (pInvG `  G ) `  p
)
9 colperpex.1 . . . . . . . 8  |-  ( ph  ->  A  e.  P )
10 colperpex.2 . . . . . . . 8  |-  ( ph  ->  B  e.  P )
11 colperpex.4 . . . . . . . 8  |-  ( ph  ->  A  =/=  B )
121, 3, 4, 6, 9, 10, 11tgelrnln 25525 . . . . . . 7  |-  ( ph  ->  ( A L B )  e.  ran  L
)
1312ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  ( A L B )  e.  ran  L )
14 simplr 792 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  x  e.  ( A L B ) )
151, 4, 3, 7, 13, 14tglnpt 25444 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  x  e.  P
)
16 eqid 2622 . . . . 5  |-  ( (pInvG `  G ) `  x
)  =  ( (pInvG `  G ) `  x
)
17 colperpex.3 . . . . . 6  |-  ( ph  ->  C  e.  P )
1817ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  C  e.  P
)
191, 2, 3, 4, 5, 7, 15, 16, 18mircl 25556 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  ( ( (pInvG `  G ) `  x
) `  C )  e.  P )
209ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  A  e.  P
)
21 eqid 2622 . . . . 5  |-  ( (pInvG `  G ) `  A
)  =  ( (pInvG `  G ) `  A
)
221, 2, 3, 4, 5, 7, 20, 21, 18mircl 25556 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  ( ( (pInvG `  G ) `  A
) `  C )  e.  P )
231, 2, 3, 4, 5, 7, 20, 21, 18mircgr 25552 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  ( A  .-  ( ( (pInvG `  G ) `  A
) `  C )
)  =  ( A 
.-  C ) )
2410ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  B  e.  P
)
25 colperpexlem3.1 . . . . . . . . . . 11  |-  ( ph  ->  -.  C  e.  ( A L B ) )
2625ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  -.  C  e.  ( A L B ) )
27 nelne2 2891 . . . . . . . . . 10  |-  ( ( x  e.  ( A L B )  /\  -.  C  e.  ( A L B ) )  ->  x  =/=  C
)
2814, 26, 27syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  x  =/=  C
)
291, 3, 4, 7, 15, 18, 28tgelrnln 25525 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  ( x L C )  e.  ran  L )
301, 3, 4, 7, 15, 18, 28tglinecom 25530 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  ( x L C )  =  ( C L x ) )
31 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  ( C L x ) (⟂G `  G
) ( A L B ) )
3230, 31eqbrtrd 4675 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  ( x L C ) (⟂G `  G
) ( A L B ) )
331, 2, 3, 4, 7, 29, 13, 32perpcom 25608 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  ( A L B ) (⟂G `  G
) ( x L C ) )
341, 2, 3, 4, 7, 20, 24, 14, 18, 33perprag 25618 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  <" A x C ">  e.  (∟G `  G ) )
351, 2, 3, 4, 5, 7, 20, 15, 18israg 25592 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  ( <" A x C ">  e.  (∟G `  G )  <->  ( A  .-  C )  =  ( A  .-  ( ( (pInvG `  G ) `  x ) `  C
) ) ) )
3634, 35mpbid 222 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  ( A  .-  C )  =  ( A  .-  ( ( (pInvG `  G ) `  x ) `  C
) ) )
3723, 36eqtr2d 2657 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  ( A  .-  ( ( (pInvG `  G ) `  x
) `  C )
)  =  ( A 
.-  ( ( (pInvG `  G ) `  A
) `  C )
) )
381, 2, 3, 4, 5, 7, 8, 19, 22, 20, 37midexlem 25587 . . 3  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  E. p  e.  P  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )
397ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  G  e. TarskiG )
4022ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  -> 
( ( (pInvG `  G ) `  A
) `  C )  e.  P )
4120ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  A  e.  P )
4218ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  C  e.  P )
4319ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  -> 
( ( (pInvG `  G ) `  x
) `  C )  e.  P )
4415ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  x  e.  P )
45 simplr 792 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  p  e.  P )
461, 2, 3, 4, 5, 39, 41, 21, 42mirbtwn 25553 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  A  e.  ( (
( (pInvG `  G
) `  A ) `  C ) I C ) )
471, 2, 3, 4, 5, 39, 44, 16, 42mirbtwn 25553 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  x  e.  ( (
( (pInvG `  G
) `  x ) `  C ) I C ) )
481, 2, 3, 4, 5, 39, 45, 8, 43mirbtwn 25553 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  p  e.  ( (
( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) I ( ( (pInvG `  G ) `  x ) `  C
) ) )
49 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  -> 
( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )
5049eqcomd 2628 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  -> 
( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) )  =  ( ( (pInvG `  G
) `  A ) `  C ) )
5150oveq1d 6665 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  -> 
( ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) I ( ( (pInvG `  G
) `  x ) `  C ) )  =  ( ( ( (pInvG `  G ) `  A
) `  C )
I ( ( (pInvG `  G ) `  x
) `  C )
) )
5248, 51eleqtrd 2703 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  p  e.  ( (
( (pInvG `  G
) `  A ) `  C ) I ( ( (pInvG `  G
) `  x ) `  C ) ) )
531, 2, 3, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52tgtrisegint 25394 . . . . . . 7  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  E. t  e.  P  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )
5439ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  G  e. TarskiG )
5541ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  A  e.  P )
56 simpllr 799 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  t  e.  P )
57 simplrr 801 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  t  e.  ( A I x ) )
58 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  x  =  A )
5958oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  ( A I x )  =  ( A I A ) )
6057, 59eleqtrd 2703 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  t  e.  ( A I A ) )
611, 2, 3, 54, 55, 56, 60axtgbtwnid 25365 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  A  =  t )
6261eqcomd 2628 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  t  =  A )
6362oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
t L p )  =  ( A L p ) )
6450ad3antrrr 766 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
)  =  ( ( (pInvG `  G ) `  A ) `  C
) )
6558fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
(pInvG `  G ) `  x )  =  ( (pInvG `  G ) `  A ) )
6665fveq1d 6193 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
( (pInvG `  G
) `  x ) `  C )  =  ( ( (pInvG `  G
) `  A ) `  C ) )
6764, 66eqtr4d 2659 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
)  =  ( ( (pInvG `  G ) `  x ) `  C
) )
6845ad3antrrr 766 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  p  e.  P )
6943ad3antrrr 766 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
( (pInvG `  G
) `  x ) `  C )  e.  P
)
701, 2, 3, 4, 5, 54, 68, 8, 69mirinv 25561 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) )  =  ( ( (pInvG `  G
) `  x ) `  C )  <->  p  =  ( ( (pInvG `  G ) `  x
) `  C )
) )
7167, 70mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  p  =  ( ( (pInvG `  G ) `  x
) `  C )
)
7244ad3antrrr 766 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  x  e.  P )
7358oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
x I x )  =  ( A I x ) )
7457, 73eleqtrrd 2704 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  t  e.  ( x I x ) )
751, 2, 3, 54, 72, 56, 74axtgbtwnid 25365 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  x  =  t )
7675eqcomd 2628 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  t  =  x )
7771, 76oveq12d 6668 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
p L t )  =  ( ( ( (pInvG `  G ) `  x ) `  C
) L x ) )
7834ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  <" A x C ">  e.  (∟G `  G ) )
791, 2, 3, 4, 5, 39, 45, 8, 43, 50mircom 25558 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  -> 
( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  A ) `  C
) )  =  ( ( (pInvG `  G
) `  x ) `  C ) )
8028ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  x  =/=  C )
811, 2, 3, 4, 39, 5, 21, 16, 8, 41, 44, 42, 45, 78, 79, 80colperpexlem2 25623 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  A  =/=  p )
8281ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  A  =/=  p )
8362, 82eqnetrd 2861 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  t  =/=  p )
841, 3, 4, 54, 56, 68, 83tglinecom 25530 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
t L p )  =  ( p L t ) )
8542ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  C  e.  P )
8680ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  x  =/=  C )
8754adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  /\  t  e.  P )  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  /\  (
( (pInvG `  G
) `  x ) `  C )  =  x )  ->  G  e. TarskiG )
8872adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  /\  t  e.  P )  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  /\  (
( (pInvG `  G
) `  x ) `  C )  =  x )  ->  x  e.  P )
8985adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  /\  t  e.  P )  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  /\  (
( (pInvG `  G
) `  x ) `  C )  =  x )  ->  C  e.  P )
901, 2, 3, 4, 5, 87, 88, 16mircinv 25563 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  /\  t  e.  P )  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  /\  (
( (pInvG `  G
) `  x ) `  C )  =  x )  ->  ( (
(pInvG `  G ) `  x ) `  x
)  =  x )
91 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  /\  t  e.  P )  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  /\  (
( (pInvG `  G
) `  x ) `  C )  =  x )  ->  ( (
(pInvG `  G ) `  x ) `  C
)  =  x )
9290, 91eqtr4d 2659 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  /\  t  e.  P )  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  /\  (
( (pInvG `  G
) `  x ) `  C )  =  x )  ->  ( (
(pInvG `  G ) `  x ) `  x
)  =  ( ( (pInvG `  G ) `  x ) `  C
) )
931, 2, 3, 4, 5, 87, 88, 16, 88, 89, 92mireq 25560 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  /\  t  e.  P )  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  /\  (
( (pInvG `  G
) `  x ) `  C )  =  x )  ->  x  =  C )
9486adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  /\  t  e.  P )  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  /\  (
( (pInvG `  G
) `  x ) `  C )  =  x )  ->  x  =/=  C )
9594neneqd 2799 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  /\  t  e.  P )  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  /\  (
( (pInvG `  G
) `  x ) `  C )  =  x )  ->  -.  x  =  C )
9693, 95pm2.65da 600 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  -.  ( ( (pInvG `  G ) `  x
) `  C )  =  x )
9796neqned 2801 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
( (pInvG `  G
) `  x ) `  C )  =/=  x
)
9847ad3antrrr 766 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  x  e.  ( ( ( (pInvG `  G ) `  x
) `  C )
I C ) )
991, 3, 4, 54, 72, 85, 69, 86, 98btwnlng2 25515 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
( (pInvG `  G
) `  x ) `  C )  e.  ( x L C ) )
1001, 3, 4, 54, 72, 85, 86, 69, 97, 99tglineelsb2 25527 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
x L C )  =  ( x L ( ( (pInvG `  G ) `  x
) `  C )
) )
10128necomd 2849 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  C  =/=  x
)
102101ad5antr 770 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  C  =/=  x )
1031, 3, 4, 54, 85, 72, 102tglinecom 25530 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  ( C L x )  =  ( x L C ) )
1041, 3, 4, 54, 69, 72, 97tglinecom 25530 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
( ( (pInvG `  G ) `  x
) `  C ) L x )  =  ( x L ( ( (pInvG `  G
) `  x ) `  C ) ) )
105100, 103, 1043eqtr4d 2666 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  ( C L x )  =  ( ( ( (pInvG `  G ) `  x
) `  C ) L x ) )
10677, 84, 1053eqtr4d 2666 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
t L p )  =  ( C L x ) )
10763, 106eqtr3d 2658 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  ( A L p )  =  ( C L x ) )
10831ad5antr 770 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  ( C L x ) (⟂G `  G ) ( A L B ) )
109107, 108eqbrtrd 4675 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  ( A L p ) (⟂G `  G ) ( A L B ) )
11039ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  G  e. TarskiG )
11141ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  A  e.  P )
11245ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  p  e.  P )
11381ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  A  =/=  p )
1141, 3, 4, 110, 111, 112, 113tgelrnln 25525 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  ( A L p )  e. 
ran  L )
11513ad5antr 770 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  ( A L B )  e. 
ran  L )
1161, 3, 4, 110, 111, 112, 113tglinerflx1 25528 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  A  e.  ( A L p ) )
11711ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  A  =/=  B
)
1181, 3, 4, 7, 20, 24, 117tglinerflx1 25528 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  A  e.  ( A L B ) )
119118ad5antr 770 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  A  e.  ( A L B ) )
120116, 119elind 3798 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  A  e.  ( ( A L p )  i^i  ( A L B ) ) )
1211, 3, 4, 110, 111, 112, 113tglinerflx2 25529 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  p  e.  ( A L p ) )
12214ad5antr 770 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  x  e.  ( A L B ) )
123113necomd 2849 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  p  =/=  A )
124 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  x  =/=  A )
12544ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  x  e.  P )
1261, 2, 3, 4, 39, 5, 21, 16, 8, 41, 44, 42, 45, 78, 79colperpexlem1 25622 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  <" x A p ">  e.  (∟G `  G ) )
127126ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  <" x A p ">  e.  (∟G `  G )
)
1281, 2, 3, 4, 5, 110, 125, 111, 112, 127ragcom 25593 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  <" p A x ">  e.  (∟G `  G )
)
1291, 2, 3, 4, 110, 114, 115, 120, 121, 122, 123, 124, 128ragperp 25612 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  ( A L p ) (⟂G `  G ) ( A L B ) )
130109, 129pm2.61dane 2881 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  ( (
(pInvG `  G ) `  A ) `  C
)  =  ( ( (pInvG `  G ) `  p ) `  (
( (pInvG `  G
) `  x ) `  C ) ) )  /\  t  e.  P
)  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  -> 
( A L p ) (⟂G `  G
) ( A L B ) )
131118ad5antr 770 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  A  e.  ( A L B ) )
13262, 131eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  t  e.  ( A L B ) )
133132orcd 407 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =  A )  ->  (
t  e.  ( A L B )  \/  A  =  B ) )
13424ad5antr 770 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  B  e.  P )
135117ad5antr 770 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  A  =/=  B )
136 simpllr 799 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  t  e.  P )
137124necomd 2849 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  A  =/=  x )
138 simplrr 801 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  t  e.  ( A I x ) )
1391, 3, 4, 110, 111, 125, 136, 137, 138btwnlng1 25514 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  t  e.  ( A L x ) )
1401, 3, 4, 110, 111, 134, 135, 125, 124, 122, 136, 139tglineeltr 25526 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  t  e.  ( A L B ) )
141140orcd 407 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  /\  (
( (pInvG `  G
) `  A ) `  C )  =  ( ( (pInvG `  G
) `  p ) `  ( ( (pInvG `  G ) `  x
) `  C )
) )  /\  t  e.  P )  /\  (
t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  /\  x  =/= 
A )  ->  (
t  e.  ( A L B )  \/  A  =  B ) )
142133, 141pm2.61dane 2881 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  ( (
(pInvG `  G ) `  A ) `  C
)  =  ( ( (pInvG `  G ) `  p ) `  (
( (pInvG `  G
) `  x ) `  C ) ) )  /\  t  e.  P
)  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  -> 
( t  e.  ( A L B )  \/  A  =  B ) )
14339ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  ( (
(pInvG `  G ) `  A ) `  C
)  =  ( ( (pInvG `  G ) `  p ) `  (
( (pInvG `  G
) `  x ) `  C ) ) )  /\  t  e.  P
)  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  ->  G  e. TarskiG )
14445ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  ( (
(pInvG `  G ) `  A ) `  C
)  =  ( ( (pInvG `  G ) `  p ) `  (
( (pInvG `  G
) `  x ) `  C ) ) )  /\  t  e.  P
)  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  ->  p  e.  P )
145 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  ( (
(pInvG `  G ) `  A ) `  C
)  =  ( ( (pInvG `  G ) `  p ) `  (
( (pInvG `  G
) `  x ) `  C ) ) )  /\  t  e.  P
)  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  -> 
t  e.  P )
14642ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  ( (
(pInvG `  G ) `  A ) `  C
)  =  ( ( (pInvG `  G ) `  p ) `  (
( (pInvG `  G
) `  x ) `  C ) ) )  /\  t  e.  P
)  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  ->  C  e.  P )
147 simprl 794 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  ( (
(pInvG `  G ) `  A ) `  C
)  =  ( ( (pInvG `  G ) `  p ) `  (
( (pInvG `  G
) `  x ) `  C ) ) )  /\  t  e.  P
)  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  -> 
t  e.  ( p I C ) )
1481, 2, 3, 143, 144, 145, 146, 147tgbtwncom 25383 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  ( (
(pInvG `  G ) `  A ) `  C
)  =  ( ( (pInvG `  G ) `  p ) `  (
( (pInvG `  G
) `  x ) `  C ) ) )  /\  t  e.  P
)  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  -> 
t  e.  ( C I p ) )
149130, 142, 148jca32 558 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  ( (
(pInvG `  G ) `  A ) `  C
)  =  ( ( (pInvG `  G ) `  p ) `  (
( (pInvG `  G
) `  x ) `  C ) ) )  /\  t  e.  P
)  /\  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) ) )  -> 
( ( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( C I p ) ) ) )
150149ex 450 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  ( (
(pInvG `  G ) `  A ) `  C
)  =  ( ( (pInvG `  G ) `  p ) `  (
( (pInvG `  G
) `  x ) `  C ) ) )  /\  t  e.  P
)  ->  ( (
t  e.  ( p I C )  /\  t  e.  ( A I x ) )  ->  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( C I p ) ) ) ) )
151150reximdva 3017 . . . . . . 7  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  -> 
( E. t  e.  P  ( t  e.  ( p I C )  /\  t  e.  ( A I x ) )  ->  E. t  e.  P  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( C I p ) ) ) ) )
15253, 151mpd 15 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  ->  E. t  e.  P  ( ( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( C I p ) ) ) )
153 r19.42v 3092 . . . . . 6  |-  ( E. t  e.  P  ( ( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( C I p ) ) )  <->  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  E. t  e.  P  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( C I p ) ) ) )
154152, 153sylib 208 . . . . 5  |-  ( ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  ( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) ) )  -> 
( ( A L p ) (⟂G `  G
) ( A L B )  /\  E. t  e.  P  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( C I p ) ) ) )
155154ex 450 . . . 4  |-  ( ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G )
( A L B ) )  /\  p  e.  P )  ->  (
( ( (pInvG `  G ) `  A
) `  C )  =  ( ( (pInvG `  G ) `  p
) `  ( (
(pInvG `  G ) `  x ) `  C
) )  ->  (
( A L p ) (⟂G `  G
) ( A L B )  /\  E. t  e.  P  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( C I p ) ) ) ) )
156155reximdva 3017 . . 3  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  ( E. p  e.  P  ( (
(pInvG `  G ) `  A ) `  C
)  =  ( ( (pInvG `  G ) `  p ) `  (
( (pInvG `  G
) `  x ) `  C ) )  ->  E. p  e.  P  ( ( A L p ) (⟂G `  G
) ( A L B )  /\  E. t  e.  P  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( C I p ) ) ) ) )
15738, 156mpd 15 . 2  |-  ( ( ( ph  /\  x  e.  ( A L B ) )  /\  ( C L x ) (⟂G `  G ) ( A L B ) )  ->  E. p  e.  P  ( ( A L p ) (⟂G `  G
) ( A L B )  /\  E. t  e.  P  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( C I p ) ) ) )
1581, 2, 3, 4, 6, 12, 17, 25footex 25613 . 2  |-  ( ph  ->  E. x  e.  ( A L B ) ( C L x ) (⟂G `  G
) ( A L B ) )
159157, 158r19.29a 3078 1  |-  ( ph  ->  E. p  e.  P  ( ( A L p ) (⟂G `  G
) ( A L B )  /\  E. t  e.  P  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( C I p ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ran crn 5115   ` cfv 5888  (class class class)co 6650   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547  ∟Gcrag 25588  ⟂Gcperpg 25590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-mir 25548  df-rag 25589  df-perpg 25591
This theorem is referenced by:  colperpex  25625
  Copyright terms: Public domain W3C validator