| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > toslublem | Structured version Visualization version Unicode version | ||
| Description: Lemma for toslub 29668 and xrsclat 29680. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.) |
| Ref | Expression |
|---|---|
| toslub.b |
|
| toslub.l |
|
| toslub.1 |
|
| toslub.2 |
|
| toslub.e |
|
| Ref | Expression |
|---|---|
| toslublem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toslub.1 |
. . . . . 6
| |
| 2 | 1 | ad2antrr 762 |
. . . . 5
|
| 3 | simplr 792 |
. . . . 5
| |
| 4 | toslub.2 |
. . . . . . 7
| |
| 5 | 4 | adantr 481 |
. . . . . 6
|
| 6 | 5 | sselda 3603 |
. . . . 5
|
| 7 | toslub.b |
. . . . . 6
| |
| 8 | toslub.e |
. . . . . 6
| |
| 9 | toslub.l |
. . . . . 6
| |
| 10 | 7, 8, 9 | tltnle 29662 |
. . . . 5
|
| 11 | 2, 3, 6, 10 | syl3anc 1326 |
. . . 4
|
| 12 | 11 | con2bid 344 |
. . 3
|
| 13 | 12 | ralbidva 2985 |
. 2
|
| 14 | 4 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 15 | simpr 477 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | sseldd 3604 |
. . . . . . . . . 10
|
| 17 | 7, 8, 9 | tltnle 29662 |
. . . . . . . . . . . . 13
|
| 18 | 1, 17 | syl3an1 1359 |
. . . . . . . . . . . 12
|
| 19 | 18 | 3expa 1265 |
. . . . . . . . . . 11
|
| 20 | 19 | con2bid 344 |
. . . . . . . . . 10
|
| 21 | 16, 20 | syldan 487 |
. . . . . . . . 9
|
| 22 | 21 | ralbidva 2985 |
. . . . . . . 8
|
| 23 | breq2 4657 |
. . . . . . . . . . 11
| |
| 24 | 23 | notbid 308 |
. . . . . . . . . 10
|
| 25 | 24 | cbvralv 3171 |
. . . . . . . . 9
|
| 26 | ralnex 2992 |
. . . . . . . . 9
| |
| 27 | 25, 26 | bitri 264 |
. . . . . . . 8
|
| 28 | 22, 27 | syl6bb 276 |
. . . . . . 7
|
| 29 | 28 | adantlr 751 |
. . . . . 6
|
| 30 | 1 | ad2antrr 762 |
. . . . . . . 8
|
| 31 | simpr 477 |
. . . . . . . 8
| |
| 32 | simplr 792 |
. . . . . . . 8
| |
| 33 | 7, 8, 9 | tltnle 29662 |
. . . . . . . 8
|
| 34 | 30, 31, 32, 33 | syl3anc 1326 |
. . . . . . 7
|
| 35 | 34 | con2bid 344 |
. . . . . 6
|
| 36 | 29, 35 | imbi12d 334 |
. . . . 5
|
| 37 | con34b 306 |
. . . . 5
| |
| 38 | 36, 37 | syl6bbr 278 |
. . . 4
|
| 39 | 38 | ralbidva 2985 |
. . 3
|
| 40 | breq1 4656 |
. . . . 5
| |
| 41 | breq1 4656 |
. . . . . 6
| |
| 42 | 41 | rexbidv 3052 |
. . . . 5
|
| 43 | 40, 42 | imbi12d 334 |
. . . 4
|
| 44 | 43 | cbvralv 3171 |
. . 3
|
| 45 | 39, 44 | syl6bbr 278 |
. 2
|
| 46 | 13, 45 | anbi12d 747 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-preset 16928 df-poset 16946 df-plt 16958 df-toset 17034 |
| This theorem is referenced by: toslub 29668 xrsclat 29680 |
| Copyright terms: Public domain | W3C validator |