Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toslub Structured version   Visualization version   Unicode version

Theorem toslub 29668
Description: In a toset, the lowest upper bound  lub, defined for partial orders is the supremum,  sup ( A ,  B ,  .<  ), defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018.) (Revised by Thierry Arnoux, 24-Sep-2018.)
Hypotheses
Ref Expression
toslub.b  |-  B  =  ( Base `  K
)
toslub.l  |-  .<  =  ( lt `  K )
toslub.1  |-  ( ph  ->  K  e. Toset )
toslub.2  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
toslub  |-  ( ph  ->  ( ( lub `  K
) `  A )  =  sup ( A ,  B ,  .<  ) )

Proof of Theorem toslub
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toslub.b . . . 4  |-  B  =  ( Base `  K
)
2 toslub.l . . . 4  |-  .<  =  ( lt `  K )
3 toslub.1 . . . 4  |-  ( ph  ->  K  e. Toset )
4 toslub.2 . . . 4  |-  ( ph  ->  A  C_  B )
5 eqid 2622 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
61, 2, 3, 4, 5toslublem 29667 . . 3  |-  ( (
ph  /\  a  e.  B )  ->  (
( A. b  e.  A  b ( le
`  K ) a  /\  A. c  e.  B  ( A. b  e.  A  b ( le `  K ) c  ->  a ( le
`  K ) c ) )  <->  ( A. b  e.  A  -.  a  .<  b  /\  A. b  e.  B  (
b  .<  a  ->  E. d  e.  A  b  .<  d ) ) ) )
76riotabidva 6627 . 2  |-  ( ph  ->  ( iota_ a  e.  B  ( A. b  e.  A  b ( le `  K ) a  /\  A. c  e.  B  ( A. b  e.  A  b ( le `  K ) c  -> 
a ( le `  K ) c ) ) )  =  (
iota_ a  e.  B  ( A. b  e.  A  -.  a  .<  b  /\  A. b  e.  B  ( b  .<  a  ->  E. d  e.  A  b 
.<  d ) ) ) )
8 eqid 2622 . . 3  |-  ( lub `  K )  =  ( lub `  K )
9 biid 251 . . 3  |-  ( ( A. b  e.  A  b ( le `  K ) a  /\  A. c  e.  B  ( A. b  e.  A  b ( le `  K ) c  -> 
a ( le `  K ) c ) )  <->  ( A. b  e.  A  b ( le `  K ) a  /\  A. c  e.  B  ( A. b  e.  A  b ( le `  K ) c  ->  a ( le
`  K ) c ) ) )
101, 5, 8, 9, 3, 4lubval 16984 . 2  |-  ( ph  ->  ( ( lub `  K
) `  A )  =  ( iota_ a  e.  B  ( A. b  e.  A  b ( le `  K ) a  /\  A. c  e.  B  ( A. b  e.  A  b ( le `  K ) c  ->  a ( le
`  K ) c ) ) ) )
111, 5, 2tosso 17036 . . . . 5  |-  ( K  e. Toset  ->  ( K  e. Toset  <->  ( 
.<  Or  B  /\  (  _I  |`  B )  C_  ( le `  K ) ) ) )
1211ibi 256 . . . 4  |-  ( K  e. Toset  ->  (  .<  Or  B  /\  (  _I  |`  B ) 
C_  ( le `  K ) ) )
1312simpld 475 . . 3  |-  ( K  e. Toset  ->  .<  Or  B )
14 id 22 . . . 4  |-  (  .<  Or  B  ->  .<  Or  B
)
1514supval2 8361 . . 3  |-  (  .<  Or  B  ->  sup ( A ,  B ,  .<  )  =  ( iota_ a  e.  B  ( A. b  e.  A  -.  a  .<  b  /\  A. b  e.  B  (
b  .<  a  ->  E. d  e.  A  b  .<  d ) ) ) )
163, 13, 153syl 18 . 2  |-  ( ph  ->  sup ( A ,  B ,  .<  )  =  ( iota_ a  e.  B  ( A. b  e.  A  -.  a  .<  b  /\  A. b  e.  B  ( b  .<  a  ->  E. d  e.  A  b 
.<  d ) ) ) )
177, 10, 163eqtr4d 2666 1  |-  ( ph  ->  ( ( lub `  K
) `  A )  =  sup ( A ,  B ,  .<  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653    _I cid 5023    Or wor 5034    |` cres 5116   ` cfv 5888   iota_crio 6610   supcsup 8346   Basecbs 15857   lecple 15948   ltcplt 16941   lubclub 16942  Tosetctos 17033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-sup 8348  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-toset 17034
This theorem is referenced by:  xrsp1  29682
  Copyright terms: Public domain W3C validator