MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclub Structured version   Visualization version   Unicode version

Theorem trclub 13739
Description: The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 17-May-2020.)
Assertion
Ref Expression
trclub  |-  ( ( R  e.  V  /\  Rel  R )  ->  |^| { r  |  ( R  C_  r  /\  ( r  o.  r )  C_  r
) }  C_  ( dom  R  X.  ran  R
) )
Distinct variable group:    R, r
Allowed substitution hint:    V( r)

Proof of Theorem trclub
StepHypRef Expression
1 relssdmrn 5656 . . . 4  |-  ( Rel 
R  ->  R  C_  ( dom  R  X.  ran  R
) )
2 ssequn1 3783 . . . 4  |-  ( R 
C_  ( dom  R  X.  ran  R )  <->  ( R  u.  ( dom  R  X.  ran  R ) )  =  ( dom  R  X.  ran  R ) )
31, 2sylib 208 . . 3  |-  ( Rel 
R  ->  ( R  u.  ( dom  R  X.  ran  R ) )  =  ( dom  R  X.  ran  R ) )
4 trclublem 13734 . . 3  |-  ( R  e.  V  ->  ( R  u.  ( dom  R  X.  ran  R ) )  e.  { r  |  ( R  C_  r  /\  ( r  o.  r )  C_  r
) } )
5 eleq1 2689 . . . 4  |-  ( ( R  u.  ( dom 
R  X.  ran  R
) )  =  ( dom  R  X.  ran  R )  ->  ( ( R  u.  ( dom  R  X.  ran  R ) )  e.  { r  |  ( R  C_  r  /\  ( r  o.  r )  C_  r
) }  <->  ( dom  R  X.  ran  R )  e.  { r  |  ( R  C_  r  /\  ( r  o.  r
)  C_  r ) } ) )
65biimpa 501 . . 3  |-  ( ( ( R  u.  ( dom  R  X.  ran  R
) )  =  ( dom  R  X.  ran  R )  /\  ( R  u.  ( dom  R  X.  ran  R ) )  e.  { r  |  ( R  C_  r  /\  ( r  o.  r
)  C_  r ) } )  ->  ( dom  R  X.  ran  R
)  e.  { r  |  ( R  C_  r  /\  ( r  o.  r )  C_  r
) } )
73, 4, 6syl2anr 495 . 2  |-  ( ( R  e.  V  /\  Rel  R )  ->  ( dom  R  X.  ran  R
)  e.  { r  |  ( R  C_  r  /\  ( r  o.  r )  C_  r
) } )
8 intss1 4492 . 2  |-  ( ( dom  R  X.  ran  R )  e.  { r  |  ( R  C_  r  /\  ( r  o.  r )  C_  r
) }  ->  |^| { r  |  ( R  C_  r  /\  ( r  o.  r )  C_  r
) }  C_  ( dom  R  X.  ran  R
) )
97, 8syl 17 1  |-  ( ( R  e.  V  /\  Rel  R )  ->  |^| { r  |  ( R  C_  r  /\  ( r  o.  r )  C_  r
) }  C_  ( dom  R  X.  ran  R
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    u. cun 3572    C_ wss 3574   |^|cint 4475    X. cxp 5112   dom cdm 5114   ran crn 5115    o. ccom 5118   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator