| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trsuc | Structured version Visualization version Unicode version | ||
| Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| trsuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trel 4759 |
. 2
| |
| 2 | sssucid 5802 |
. . . . 5
| |
| 3 | ssexg 4804 |
. . . . 5
| |
| 4 | 2, 3 | mpan 706 |
. . . 4
|
| 5 | sucidg 5803 |
. . . 4
| |
| 6 | 4, 5 | syl 17 |
. . 3
|
| 7 | 6 | ancri 575 |
. 2
|
| 8 | 1, 7 | impel 485 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-uni 4437 df-tr 4753 df-suc 5729 |
| This theorem is referenced by: onuninsuci 7040 limsuc 7049 tz7.44-2 7503 cantnflt 8569 cantnfp1lem3 8577 cantnflem1b 8583 cantnflem1 8586 cnfcom 8597 axdc3lem2 9273 inar1 9597 bnj967 31015 limsuc2 37611 |
| Copyright terms: Public domain | W3C validator |