MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trsuc Structured version   Visualization version   Unicode version

Theorem trsuc 5810
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
trsuc  |-  ( ( Tr  A  /\  suc  B  e.  A )  ->  B  e.  A )

Proof of Theorem trsuc
StepHypRef Expression
1 trel 4759 . 2  |-  ( Tr  A  ->  ( ( B  e.  suc  B  /\  suc  B  e.  A )  ->  B  e.  A
) )
2 sssucid 5802 . . . . 5  |-  B  C_  suc  B
3 ssexg 4804 . . . . 5  |-  ( ( B  C_  suc  B  /\  suc  B  e.  A )  ->  B  e.  _V )
42, 3mpan 706 . . . 4  |-  ( suc 
B  e.  A  ->  B  e.  _V )
5 sucidg 5803 . . . 4  |-  ( B  e.  _V  ->  B  e.  suc  B )
64, 5syl 17 . . 3  |-  ( suc 
B  e.  A  ->  B  e.  suc  B )
76ancri 575 . 2  |-  ( suc 
B  e.  A  -> 
( B  e.  suc  B  /\  suc  B  e.  A ) )
81, 7impel 485 1  |-  ( ( Tr  A  /\  suc  B  e.  A )  ->  B  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   _Vcvv 3200    C_ wss 3574   Tr wtr 4752   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-sn 4178  df-uni 4437  df-tr 4753  df-suc 5729
This theorem is referenced by:  onuninsuci  7040  limsuc  7049  tz7.44-2  7503  cantnflt  8569  cantnfp1lem3  8577  cantnflem1b  8583  cantnflem1  8586  cnfcom  8597  axdc3lem2  9273  inar1  9597  bnj967  31015  limsuc2  37611
  Copyright terms: Public domain W3C validator