Proof of Theorem tz7.44-2
| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6191 |
. . . 4
       
   |
| 2 | | reseq2 5391 |
. . . . 5
       |
| 3 | 2 | fveq2d 6195 |
. . . 4
          
    |
| 4 | 1, 3 | eqeq12d 2637 |
. . 3
           
             |
| 5 | | tz7.44.2 |
. . 3
        
    |
| 6 | 4, 5 | vtoclga 3272 |
. 2
             |
| 7 | 2 | eleq1d 2686 |
. . . 4
    
    |
| 8 | | tz7.44.3 |
. . . 4
     |
| 9 | 7, 8 | vtoclga 3272 |
. . 3
     |
| 10 | | noel 3919 |
. . . . . . 7
 |
| 11 | | dmeq 5324 |
. . . . . . . . 9
 

    |
| 12 | | dm0 5339 |
. . . . . . . . 9
 |
| 13 | 11, 12 | syl6eq 2672 |
. . . . . . . 8
 

    |
| 14 | | tz7.44.5 |
. . . . . . . . . . . . 13
 |
| 15 | | ordsson 6989 |
. . . . . . . . . . . . 13

  |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . 12
 |
| 17 | | ordtr 5737 |
. . . . . . . . . . . . . 14

  |
| 18 | 14, 17 | ax-mp 5 |
. . . . . . . . . . . . 13
 |
| 19 | | trsuc 5810 |
. . . . . . . . . . . . 13
  
  |
| 20 | 18, 19 | mpan 706 |
. . . . . . . . . . . 12

  |
| 21 | 16, 20 | sseldi 3601 |
. . . . . . . . . . 11

  |
| 22 | | sucidg 5803 |
. . . . . . . . . . 11
   |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . 10

  |
| 24 | | dmres 5419 |
. . . . . . . . . . 11
     |
| 25 | | ordelss 5739 |
. . . . . . . . . . . . . 14
  
  |
| 26 | 14, 25 | mpan 706 |
. . . . . . . . . . . . 13

  |
| 27 | | tz7.44.4 |
. . . . . . . . . . . . . 14
 |
| 28 | | fndm 5990 |
. . . . . . . . . . . . . 14
   |
| 29 | 27, 28 | ax-mp 5 |
. . . . . . . . . . . . 13
 |
| 30 | 26, 29 | syl6sseqr 3652 |
. . . . . . . . . . . 12

  |
| 31 | | df-ss 3588 |
. . . . . . . . . . . 12


   |
| 32 | 30, 31 | sylib 208 |
. . . . . . . . . . 11
 
   |
| 33 | 24, 32 | syl5eq 2668 |
. . . . . . . . . 10
     |
| 34 | 23, 33 | eleqtrrd 2704 |
. . . . . . . . 9

    |
| 35 | | eleq2 2690 |
. . . . . . . . 9
   
 
   |
| 36 | 34, 35 | syl5ibcom 235 |
. . . . . . . 8
 
     |
| 37 | 13, 36 | syl5 34 |
. . . . . . 7
       |
| 38 | 10, 37 | mtoi 190 |
. . . . . 6
     |
| 39 | 38 | iffalsed 4097 |
. . . . 5
        
   
                                           |
| 40 | | nlimsucg 7042 |
. . . . . . . 8
   |
| 41 | 21, 40 | syl 17 |
. . . . . . 7

  |
| 42 | | limeq 5735 |
. . . . . . . 8
         |
| 43 | 33, 42 | syl 17 |
. . . . . . 7
 
 
   |
| 44 | 41, 43 | mtbird 315 |
. . . . . 6

    |
| 45 | 44 | iffalsed 4097 |
. . . . 5
                                       |
| 46 | 33 | unieqd 4446 |
. . . . . . . . 9
       |
| 47 | | eloni 5733 |
. . . . . . . . . . 11
   |
| 48 | | ordunisuc 7032 |
. . . . . . . . . . 11

   |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . 10
    |
| 50 | 21, 49 | syl 17 |
. . . . . . . . 9
    |
| 51 | 46, 50 | eqtrd 2656 |
. . . . . . . 8
      |
| 52 | 51 | fveq2d 6195 |
. . . . . . 7
                  |
| 53 | | fvres 6207 |
. . . . . . . 8
             |
| 54 | 23, 53 | syl 17 |
. . . . . . 7
             |
| 55 | 52, 54 | eqtrd 2656 |
. . . . . 6
                |
| 56 | 55 | fveq2d 6195 |
. . . . 5
                        |
| 57 | 39, 45, 56 | 3eqtrd 2660 |
. . . 4
        
   
                            |
| 58 | | fvex 6201 |
. . . 4
         |
| 59 | 57, 58 | syl6eqel 2709 |
. . 3
        
   
                    |
| 60 | | eqeq1 2626 |
. . . . 5
   
     |
| 61 | | dmeq 5324 |
. . . . . . 7
  
    |
| 62 | | limeq 5735 |
. . . . . . 7
   
     |
| 63 | 61, 62 | syl 17 |
. . . . . 6
   
     |
| 64 | | rneq 5351 |
. . . . . . 7
  
    |
| 65 | 64 | unieqd 4446 |
. . . . . 6
   
     |
| 66 | | fveq1 6190 |
. . . . . . . 8
         
       |
| 67 | 61 | unieqd 4446 |
. . . . . . . . 9
   
     |
| 68 | 67 | fveq2d 6195 |
. . . . . . . 8
           
         |
| 69 | 66, 68 | eqtrd 2656 |
. . . . . . 7
         
         |
| 70 | 69 | fveq2d 6195 |
. . . . . 6
                           |
| 71 | 63, 65, 70 | ifbieq12d 4113 |
. . . . 5
    
               
   
                  |
| 72 | 60, 71 | ifbieq2d 4111 |
. . . 4
    
    
                     
   
                   |
| 73 | | tz7.44.1 |
. . . 4
      
                |
| 74 | 72, 73 | fvmptg 6280 |
. . 3
           
   
                                 
   
                   |
| 75 | 9, 59, 74 | syl2anc 693 |
. 2
               
   
                   |
| 76 | 6, 75, 57 | 3eqtrd 2660 |
1
               |