| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmsval2 | Structured version Visualization version Unicode version | ||
| Description: Definition of the
topological group sum(s) of a collection |
| Ref | Expression |
|---|---|
| tsmsval.b |
|
| tsmsval.j |
|
| tsmsval.s |
|
| tsmsval.l |
|
| tsmsval.g |
|
| tsmsval2.f |
|
| tsmsval2.a |
|
| Ref | Expression |
|---|---|
| tsmsval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tsms 21930 |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | vex 3203 |
. . . . . . 7
| |
| 4 | 3 | dmex 7099 |
. . . . . 6
|
| 5 | 4 | pwex 4848 |
. . . . 5
|
| 6 | 5 | inex1 4799 |
. . . 4
|
| 7 | 6 | a1i 11 |
. . 3
|
| 8 | simplrl 800 |
. . . . . . 7
| |
| 9 | 8 | fveq2d 6195 |
. . . . . 6
|
| 10 | tsmsval.j |
. . . . . 6
| |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . 5
|
| 12 | id 22 |
. . . . . . 7
| |
| 13 | simprr 796 |
. . . . . . . . . . . 12
| |
| 14 | 13 | dmeqd 5326 |
. . . . . . . . . . 11
|
| 15 | tsmsval2.a |
. . . . . . . . . . . 12
| |
| 16 | 15 | adantr 481 |
. . . . . . . . . . 11
|
| 17 | 14, 16 | eqtrd 2656 |
. . . . . . . . . 10
|
| 18 | 17 | pweqd 4163 |
. . . . . . . . 9
|
| 19 | 18 | ineq1d 3813 |
. . . . . . . 8
|
| 20 | tsmsval.s |
. . . . . . . 8
| |
| 21 | 19, 20 | syl6eqr 2674 |
. . . . . . 7
|
| 22 | 12, 21 | sylan9eqr 2678 |
. . . . . 6
|
| 23 | rabeq 3192 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | syl 17 |
. . . . . . . . 9
|
| 25 | 22, 24 | mpteq12dv 4733 |
. . . . . . . 8
|
| 26 | 25 | rneqd 5353 |
. . . . . . 7
|
| 27 | tsmsval.l |
. . . . . . 7
| |
| 28 | 26, 27 | syl6eqr 2674 |
. . . . . 6
|
| 29 | 22, 28 | oveq12d 6668 |
. . . . 5
|
| 30 | 11, 29 | oveq12d 6668 |
. . . 4
|
| 31 | simplrr 801 |
. . . . . . 7
| |
| 32 | 31 | reseq1d 5395 |
. . . . . 6
|
| 33 | 8, 32 | oveq12d 6668 |
. . . . 5
|
| 34 | 22, 33 | mpteq12dv 4733 |
. . . 4
|
| 35 | 30, 34 | fveq12d 6197 |
. . 3
|
| 36 | 7, 35 | csbied 3560 |
. 2
|
| 37 | tsmsval.g |
. . 3
| |
| 38 | elex 3212 |
. . 3
| |
| 39 | 37, 38 | syl 17 |
. 2
|
| 40 | tsmsval2.f |
. . 3
| |
| 41 | elex 3212 |
. . 3
| |
| 42 | 40, 41 | syl 17 |
. 2
|
| 43 | fvexd 6203 |
. 2
| |
| 44 | 2, 36, 39, 42, 43 | ovmpt2d 6788 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-tsms 21930 |
| This theorem is referenced by: tsmsval 21934 tsmspropd 21935 |
| Copyright terms: Public domain | W3C validator |