| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsrlemax | Structured version Visualization version Unicode version | ||
| Description: Two ways of saying a number is less than or equal to the maximum of two others. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| Ref | Expression |
|---|---|
| istsr.1 |
|
| Ref | Expression |
|---|---|
| tsrlemax |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4657 |
. . 3
| |
| 2 | 1 | bibi1d 333 |
. 2
|
| 3 | breq2 4657 |
. . 3
| |
| 4 | 3 | bibi1d 333 |
. 2
|
| 5 | olc 399 |
. . 3
| |
| 6 | eqid 2622 |
. . . . . . . . . 10
| |
| 7 | 6 | istsr 17217 |
. . . . . . . . 9
|
| 8 | 7 | simplbi 476 |
. . . . . . . 8
|
| 9 | pstr 17211 |
. . . . . . . . 9
| |
| 10 | 9 | 3expib 1268 |
. . . . . . . 8
|
| 11 | 8, 10 | syl 17 |
. . . . . . 7
|
| 12 | 11 | adantr 481 |
. . . . . 6
|
| 13 | 12 | expdimp 453 |
. . . . 5
|
| 14 | 13 | impancom 456 |
. . . 4
|
| 15 | idd 24 |
. . . 4
| |
| 16 | 14, 15 | jaod 395 |
. . 3
|
| 17 | 5, 16 | impbid2 216 |
. 2
|
| 18 | orc 400 |
. . 3
| |
| 19 | idd 24 |
. . . 4
| |
| 20 | istsr.1 |
. . . . . . . 8
| |
| 21 | 20 | tsrlin 17219 |
. . . . . . 7
|
| 22 | 21 | 3adant3r1 1274 |
. . . . . 6
|
| 23 | 22 | orcanai 952 |
. . . . 5
|
| 24 | pstr 17211 |
. . . . . . . . . 10
| |
| 25 | 24 | 3expib 1268 |
. . . . . . . . 9
|
| 26 | 8, 25 | syl 17 |
. . . . . . . 8
|
| 27 | 26 | adantr 481 |
. . . . . . 7
|
| 28 | 27 | expdimp 453 |
. . . . . 6
|
| 29 | 28 | impancom 456 |
. . . . 5
|
| 30 | 23, 29 | syldan 487 |
. . . 4
|
| 31 | 19, 30 | jaod 395 |
. . 3
|
| 32 | 18, 31 | impbid2 216 |
. 2
|
| 33 | 2, 4, 17, 32 | ifbothda 4123 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-ps 17200 df-tsr 17201 |
| This theorem is referenced by: ordtbaslem 20992 |
| Copyright terms: Public domain | W3C validator |