MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsrlemax Structured version   Visualization version   Unicode version

Theorem tsrlemax 17220
Description: Two ways of saying a number is less than or equal to the maximum of two others. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
istsr.1  |-  X  =  dom  R
Assertion
Ref Expression
tsrlemax  |-  ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A R if ( B R C ,  C ,  B )  <->  ( A R B  \/  A R C ) ) )

Proof of Theorem tsrlemax
StepHypRef Expression
1 breq2 4657 . . 3  |-  ( C  =  if ( B R C ,  C ,  B )  ->  ( A R C  <->  A R if ( B R C ,  C ,  B
) ) )
21bibi1d 333 . 2  |-  ( C  =  if ( B R C ,  C ,  B )  ->  (
( A R C  <-> 
( A R B  \/  A R C ) )  <->  ( A R if ( B R C ,  C ,  B )  <->  ( A R B  \/  A R C ) ) ) )
3 breq2 4657 . . 3  |-  ( B  =  if ( B R C ,  C ,  B )  ->  ( A R B  <->  A R if ( B R C ,  C ,  B
) ) )
43bibi1d 333 . 2  |-  ( B  =  if ( B R C ,  C ,  B )  ->  (
( A R B  <-> 
( A R B  \/  A R C ) )  <->  ( A R if ( B R C ,  C ,  B )  <->  ( A R B  \/  A R C ) ) ) )
5 olc 399 . . 3  |-  ( A R C  ->  ( A R B  \/  A R C ) )
6 eqid 2622 . . . . . . . . . 10  |-  dom  R  =  dom  R
76istsr 17217 . . . . . . . . 9  |-  ( R  e.  TosetRel 
<->  ( R  e.  PosetRel  /\  ( dom  R  X.  dom  R )  C_  ( R  u.  `' R ) ) )
87simplbi 476 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  R  e.  PosetRel )
9 pstr 17211 . . . . . . . . 9  |-  ( ( R  e.  PosetRel  /\  A R B  /\  B R C )  ->  A R C )
1093expib 1268 . . . . . . . 8  |-  ( R  e.  PosetRel  ->  ( ( A R B  /\  B R C )  ->  A R C ) )
118, 10syl 17 . . . . . . 7  |-  ( R  e.  TosetRel  ->  ( ( A R B  /\  B R C )  ->  A R C ) )
1211adantr 481 . . . . . 6  |-  ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A R B  /\  B R C )  ->  A R C ) )
1312expdimp 453 . . . . 5  |-  ( ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R B )  ->  ( B R C  ->  A R C ) )
1413impancom 456 . . . 4  |-  ( ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  B R C )  ->  ( A R B  ->  A R C ) )
15 idd 24 . . . 4  |-  ( ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  B R C )  ->  ( A R C  ->  A R C ) )
1614, 15jaod 395 . . 3  |-  ( ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  B R C )  ->  (
( A R B  \/  A R C )  ->  A R C ) )
175, 16impbid2 216 . 2  |-  ( ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  B R C )  ->  ( A R C  <->  ( A R B  \/  A R C ) ) )
18 orc 400 . . 3  |-  ( A R B  ->  ( A R B  \/  A R C ) )
19 idd 24 . . . 4  |-  ( ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  -.  B R C )  -> 
( A R B  ->  A R B ) )
20 istsr.1 . . . . . . . 8  |-  X  =  dom  R
2120tsrlin 17219 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  B  e.  X  /\  C  e.  X )  ->  ( B R C  \/  C R B ) )
22213adant3r1 1274 . . . . . 6  |-  ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B R C  \/  C R B ) )
2322orcanai 952 . . . . 5  |-  ( ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  -.  B R C )  ->  C R B )
24 pstr 17211 . . . . . . . . . 10  |-  ( ( R  e.  PosetRel  /\  A R C  /\  C R B )  ->  A R B )
25243expib 1268 . . . . . . . . 9  |-  ( R  e.  PosetRel  ->  ( ( A R C  /\  C R B )  ->  A R B ) )
268, 25syl 17 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  ( ( A R C  /\  C R B )  ->  A R B ) )
2726adantr 481 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A R C  /\  C R B )  ->  A R B ) )
2827expdimp 453 . . . . . 6  |-  ( ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R C )  ->  ( C R B  ->  A R B ) )
2928impancom 456 . . . . 5  |-  ( ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  C R B )  ->  ( A R C  ->  A R B ) )
3023, 29syldan 487 . . . 4  |-  ( ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  -.  B R C )  -> 
( A R C  ->  A R B ) )
3119, 30jaod 395 . . 3  |-  ( ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  -.  B R C )  -> 
( ( A R B  \/  A R C )  ->  A R B ) )
3218, 31impbid2 216 . 2  |-  ( ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  -.  B R C )  -> 
( A R B  <-> 
( A R B  \/  A R C ) ) )
332, 4, 17, 32ifbothda 4123 1  |-  ( ( R  e.  TosetRel  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A R if ( B R C ,  C ,  B )  <->  ( A R B  \/  A R C ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    u. cun 3572    C_ wss 3574   ifcif 4086   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   dom cdm 5114   PosetRelcps 17198    TosetRel ctsr 17199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-ps 17200  df-tsr 17201
This theorem is referenced by:  ordtbaslem  20992
  Copyright terms: Public domain W3C validator