MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffixsn Structured version   Visualization version   Unicode version

Theorem uffixsn 21729
Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffixsn  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  e.  F
)

Proof of Theorem uffixsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ufilfil 21708 . . . . . . . 8  |-  ( F  e.  ( UFil `  X
)  ->  F  e.  ( Fil `  X ) )
2 filn0 21666 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
3 intssuni 4499 . . . . . . . 8  |-  ( F  =/=  (/)  ->  |^| F  C_  U. F )
41, 2, 33syl 18 . . . . . . 7  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  C_  U. F )
5 filunibas 21685 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  U. F  =  X )
61, 5syl 17 . . . . . . 7  |-  ( F  e.  ( UFil `  X
)  ->  U. F  =  X )
74, 6sseqtrd 3641 . . . . . 6  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  C_  X )
87sselda 3603 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  A  e.  X )
98snssd 4340 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  C_  X
)
10 snex 4908 . . . . 5  |-  { A }  e.  _V
1110elpw 4164 . . . 4  |-  ( { A }  e.  ~P X 
<->  { A }  C_  X )
129, 11sylibr 224 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  e.  ~P X )
13 snidg 4206 . . . 4  |-  ( A  e.  |^| F  ->  A  e.  { A } )
1413adantl 482 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  A  e.  { A } )
15 eleq2 2690 . . . 4  |-  ( x  =  { A }  ->  ( A  e.  x  <->  A  e.  { A }
) )
1615elrab 3363 . . 3  |-  ( { A }  e.  {
x  e.  ~P X  |  A  e.  x } 
<->  ( { A }  e.  ~P X  /\  A  e.  { A } ) )
1712, 14, 16sylanbrc 698 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  e.  {
x  e.  ~P X  |  A  e.  x } )
18 uffixfr 21727 . . 3  |-  ( F  e.  ( UFil `  X
)  ->  ( A  e.  |^| F  <->  F  =  { x  e.  ~P X  |  A  e.  x } ) )
1918biimpa 501 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  F  =  { x  e.  ~P X  |  A  e.  x } )
2017, 19eleqtrrd 2704 1  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  e.  F
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436   |^|cint 4475   ` cfv 5888   Filcfil 21649   UFilcufil 21703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-fg 19744  df-fil 21650  df-ufil 21705
This theorem is referenced by:  ufildom1  21730  cfinufil  21732  fin1aufil  21736
  Copyright terms: Public domain W3C validator