MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrnbgr0nb Structured version   Visualization version   Unicode version

Theorem uhgrnbgr0nb 26250
Description: A vertex which is not endpoint of an edge has no neighbor in a hypergraph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.)
Assertion
Ref Expression
uhgrnbgr0nb  |-  ( ( G  e. UHGraph  /\  A. e  e.  (Edg `  G ) N  e/  e )  -> 
( G NeighbVtx  N )  =  (/) )
Distinct variable groups:    e, G    e, N

Proof of Theorem uhgrnbgr0nb
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6  |-  (Vtx `  G )  =  (Vtx
`  G )
2 eqid 2622 . . . . . 6  |-  (Edg `  G )  =  (Edg
`  G )
31, 2nbuhgr 26239 . . . . 5  |-  ( ( G  e. UHGraph  /\  N  e. 
_V )  ->  ( G NeighbVtx  N )  =  {
n  e.  ( (Vtx
`  G )  \  { N } )  |  E. e  e.  (Edg
`  G ) { N ,  n }  C_  e } )
43adantlr 751 . . . 4  |-  ( ( ( G  e. UHGraph  /\  A. e  e.  (Edg `  G
) N  e/  e
)  /\  N  e.  _V )  ->  ( G NeighbVtx  N )  =  {
n  e.  ( (Vtx
`  G )  \  { N } )  |  E. e  e.  (Edg
`  G ) { N ,  n }  C_  e } )
5 df-nel 2898 . . . . . . . . . . . . . 14  |-  ( N  e/  e  <->  -.  N  e.  e )
6 prssg 4350 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  _V  /\  n  e.  ( (Vtx `  G )  \  { N } ) )  -> 
( ( N  e.  e  /\  n  e.  e )  <->  { N ,  n }  C_  e
) )
7 simpl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  e  /\  n  e.  e )  ->  N  e.  e )
86, 7syl6bir 244 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  _V  /\  n  e.  ( (Vtx `  G )  \  { N } ) )  -> 
( { N ,  n }  C_  e  ->  N  e.  e )
)
98ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. UHGraph  /\  ( N  e.  _V  /\  n  e.  ( (Vtx `  G
)  \  { N } ) ) )  /\  e  e.  (Edg
`  G ) )  ->  ( { N ,  n }  C_  e  ->  N  e.  e ) )
109con3d 148 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. UHGraph  /\  ( N  e.  _V  /\  n  e.  ( (Vtx `  G
)  \  { N } ) ) )  /\  e  e.  (Edg
`  G ) )  ->  ( -.  N  e.  e  ->  -.  { N ,  n }  C_  e ) )
115, 10syl5bi 232 . . . . . . . . . . . . 13  |-  ( ( ( G  e. UHGraph  /\  ( N  e.  _V  /\  n  e.  ( (Vtx `  G
)  \  { N } ) ) )  /\  e  e.  (Edg
`  G ) )  ->  ( N  e/  e  ->  -.  { N ,  n }  C_  e
) )
1211ralimdva 2962 . . . . . . . . . . . 12  |-  ( ( G  e. UHGraph  /\  ( N  e.  _V  /\  n  e.  ( (Vtx `  G
)  \  { N } ) ) )  ->  ( A. e  e.  (Edg `  G ) N  e/  e  ->  A. e  e.  (Edg `  G )  -.  { N ,  n }  C_  e ) )
1312imp 445 . . . . . . . . . . 11  |-  ( ( ( G  e. UHGraph  /\  ( N  e.  _V  /\  n  e.  ( (Vtx `  G
)  \  { N } ) ) )  /\  A. e  e.  (Edg `  G ) N  e/  e )  ->  A. e  e.  (Edg `  G )  -.  { N ,  n }  C_  e )
14 ralnex 2992 . . . . . . . . . . 11  |-  ( A. e  e.  (Edg `  G
)  -.  { N ,  n }  C_  e  <->  -. 
E. e  e.  (Edg
`  G ) { N ,  n }  C_  e )
1513, 14sylib 208 . . . . . . . . . 10  |-  ( ( ( G  e. UHGraph  /\  ( N  e.  _V  /\  n  e.  ( (Vtx `  G
)  \  { N } ) ) )  /\  A. e  e.  (Edg `  G ) N  e/  e )  ->  -.  E. e  e.  (Edg
`  G ) { N ,  n }  C_  e )
1615expcom 451 . . . . . . . . 9  |-  ( A. e  e.  (Edg `  G
) N  e/  e  ->  ( ( G  e. UHGraph  /\  ( N  e.  _V  /\  n  e.  ( (Vtx
`  G )  \  { N } ) ) )  ->  -.  E. e  e.  (Edg `  G ) { N ,  n }  C_  e ) )
1716expd 452 . . . . . . . 8  |-  ( A. e  e.  (Edg `  G
) N  e/  e  ->  ( G  e. UHGraph  ->  ( ( N  e.  _V  /\  n  e.  ( (Vtx
`  G )  \  { N } ) )  ->  -.  E. e  e.  (Edg `  G ) { N ,  n }  C_  e ) ) )
1817impcom 446 . . . . . . 7  |-  ( ( G  e. UHGraph  /\  A. e  e.  (Edg `  G ) N  e/  e )  -> 
( ( N  e. 
_V  /\  n  e.  ( (Vtx `  G )  \  { N } ) )  ->  -.  E. e  e.  (Edg `  G ) { N ,  n }  C_  e ) )
1918expdimp 453 . . . . . 6  |-  ( ( ( G  e. UHGraph  /\  A. e  e.  (Edg `  G
) N  e/  e
)  /\  N  e.  _V )  ->  ( n  e.  ( (Vtx `  G )  \  { N } )  ->  -.  E. e  e.  (Edg `  G ) { N ,  n }  C_  e
) )
2019ralrimiv 2965 . . . . 5  |-  ( ( ( G  e. UHGraph  /\  A. e  e.  (Edg `  G
) N  e/  e
)  /\  N  e.  _V )  ->  A. n  e.  ( (Vtx `  G
)  \  { N } )  -.  E. e  e.  (Edg `  G
) { N ,  n }  C_  e )
21 rabeq0 3957 . . . . 5  |-  ( { n  e.  ( (Vtx
`  G )  \  { N } )  |  E. e  e.  (Edg
`  G ) { N ,  n }  C_  e }  =  (/)  <->  A. n  e.  ( (Vtx `  G )  \  { N } )  -.  E. e  e.  (Edg `  G
) { N ,  n }  C_  e )
2220, 21sylibr 224 . . . 4  |-  ( ( ( G  e. UHGraph  /\  A. e  e.  (Edg `  G
) N  e/  e
)  /\  N  e.  _V )  ->  { n  e.  ( (Vtx `  G
)  \  { N } )  |  E. e  e.  (Edg `  G
) { N ,  n }  C_  e }  =  (/) )
234, 22eqtrd 2656 . . 3  |-  ( ( ( G  e. UHGraph  /\  A. e  e.  (Edg `  G
) N  e/  e
)  /\  N  e.  _V )  ->  ( G NeighbVtx  N )  =  (/) )
2423expcom 451 . 2  |-  ( N  e.  _V  ->  (
( G  e. UHGraph  /\  A. e  e.  (Edg `  G
) N  e/  e
)  ->  ( G NeighbVtx  N )  =  (/) ) )
25 id 22 . . . . 5  |-  ( -.  N  e.  _V  ->  -.  N  e.  _V )
2625intnand 962 . . . 4  |-  ( -.  N  e.  _V  ->  -.  ( G  e.  _V  /\  N  e.  _V )
)
27 nbgrprc0 26229 . . . 4  |-  ( -.  ( G  e.  _V  /\  N  e.  _V )  ->  ( G NeighbVtx  N )  =  (/) )
2826, 27syl 17 . . 3  |-  ( -.  N  e.  _V  ->  ( G NeighbVtx  N )  =  (/) )
2928a1d 25 . 2  |-  ( -.  N  e.  _V  ->  ( ( G  e. UHGraph  /\  A. e  e.  (Edg `  G
) N  e/  e
)  ->  ( G NeighbVtx  N )  =  (/) ) )
3024, 29pm2.61i 176 1  |-  ( ( G  e. UHGraph  /\  A. e  e.  (Edg `  G ) N  e/  e )  -> 
( G NeighbVtx  N )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    e/ wnel 2897   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   UHGraph cuhgr 25951   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-edg 25940  df-uhgr 25953  df-nbgr 26228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator