Step | Hyp | Ref
| Expression |
1 | | eqid 2622 |
. . . . . 6
Vtx  Vtx   |
2 | | eqid 2622 |
. . . . . 6
Edg  Edg   |
3 | 1, 2 | nbuhgr 26239 |
. . . . 5
  UHGraph
  NeighbVtx    Vtx      Edg         |
4 | 3 | adantlr 751 |
. . . 4
   UHGraph 
Edg   

 NeighbVtx    Vtx      Edg         |
5 | | df-nel 2898 |
. . . . . . . . . . . . . 14

  |
6 | | prssg 4350 |
. . . . . . . . . . . . . . . . 17
 
 Vtx        
      |
7 | | simpl 473 |
. . . . . . . . . . . . . . . . 17
 
   |
8 | 6, 7 | syl6bir 244 |
. . . . . . . . . . . . . . . 16
 
 Vtx         
   |
9 | 8 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
   UHGraph 
 Vtx 
     Edg          |
10 | 9 | con3d 148 |
. . . . . . . . . . . . . 14
   UHGraph 
 Vtx 
     Edg   
 
    |
11 | 5, 10 | syl5bi 232 |
. . . . . . . . . . . . 13
   UHGraph 
 Vtx 
     Edg   
      |
12 | 11 | ralimdva 2962 |
. . . . . . . . . . . 12
  UHGraph

 Vtx 
       Edg    Edg        |
13 | 12 | imp 445 |
. . . . . . . . . . 11
   UHGraph 
 Vtx 
      Edg    
Edg   
   |
14 | | ralnex 2992 |
. . . . . . . . . . 11
 
Edg      Edg        |
15 | 13, 14 | sylib 208 |
. . . . . . . . . 10
   UHGraph 
 Vtx 
      Edg     Edg        |
16 | 15 | expcom 451 |
. . . . . . . . 9
 
Edg     UHGraph   Vtx      
 Edg         |
17 | 16 | expd 452 |
. . . . . . . 8
 
Edg    UHGraph    Vtx     
 Edg          |
18 | 17 | impcom 446 |
. . . . . . 7
  UHGraph
 Edg     
 Vtx     
 Edg         |
19 | 18 | expdimp 453 |
. . . . . 6
   UHGraph 
Edg   

  Vtx      Edg         |
20 | 19 | ralrimiv 2965 |
. . . . 5
   UHGraph 
Edg   

  Vtx 
   
Edg     
  |
21 | | rabeq0 3957 |
. . . . 5
   Vtx      Edg       
 Vtx     
Edg     
  |
22 | 20, 21 | sylibr 224 |
. . . 4
   UHGraph 
Edg   

  Vtx 
   
Edg     
   |
23 | 4, 22 | eqtrd 2656 |
. . 3
   UHGraph 
Edg   

 NeighbVtx    |
24 | 23 | expcom 451 |
. 2
   UHGraph 
Edg   
 NeighbVtx     |
25 | | id 22 |
. . . . 5
   |
26 | 25 | intnand 962 |
. . . 4
     |
27 | | nbgrprc0 26229 |
. . . 4
    NeighbVtx
   |
28 | 26, 27 | syl 17 |
. . 3
  NeighbVtx    |
29 | 28 | a1d 25 |
. 2
   UHGraph 
Edg   
 NeighbVtx     |
30 | 24, 29 | pm2.61i 176 |
1
  UHGraph
 Edg    
NeighbVtx    |