MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbuhgr Structured version   Visualization version   Unicode version

Theorem nbuhgr 26239
Description: The set of neighbors of a vertex in a hypergraph. This version of nbgrval 26234 (with  N being an arbitrary set instead of being a vertex) only holds for classes whose edges are subsets of the set of vertices (hypergraphs!). (Contributed by AV, 26-Oct-2020.) (Proof shortened by AV, 15-Nov-2020.)
Hypotheses
Ref Expression
nbgrel.v  |-  V  =  (Vtx `  G )
nbgrel.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
nbuhgr  |-  ( ( G  e. UHGraph  /\  N  e.  X )  ->  ( G NeighbVtx  N )  =  {
n  e.  ( V 
\  { N }
)  |  E. e  e.  E  { N ,  n }  C_  e } )
Distinct variable groups:    e, n    e, E    e, G    e, N    e, V    n, G    n, N    n, V    e, X, n
Allowed substitution hint:    E( n)

Proof of Theorem nbuhgr
StepHypRef Expression
1 nbgrel.v . . . 4  |-  V  =  (Vtx `  G )
2 nbgrel.e . . . 4  |-  E  =  (Edg `  G )
31, 2nbgrval 26234 . . 3  |-  ( N  e.  V  ->  ( G NeighbVtx  N )  =  {
n  e.  ( V 
\  { N }
)  |  E. e  e.  E  { N ,  n }  C_  e } )
43a1d 25 . 2  |-  ( N  e.  V  ->  (
( G  e. UHGraph  /\  N  e.  X )  ->  ( G NeighbVtx  N )  =  {
n  e.  ( V 
\  { N }
)  |  E. e  e.  E  { N ,  n }  C_  e } ) )
5 df-nel 2898 . . . . . 6  |-  ( N  e/  V  <->  -.  N  e.  V )
61nbgrnvtx0 26237 . . . . . 6  |-  ( N  e/  V  ->  ( G NeighbVtx  N )  =  (/) )
75, 6sylbir 225 . . . . 5  |-  ( -.  N  e.  V  -> 
( G NeighbVtx  N )  =  (/) )
87adantr 481 . . . 4  |-  ( ( -.  N  e.  V  /\  ( G  e. UHGraph  /\  N  e.  X ) )  -> 
( G NeighbVtx  N )  =  (/) )
9 simpl 473 . . . . . . . . . . . 12  |-  ( ( G  e. UHGraph  /\  N  e.  X )  ->  G  e. UHGraph  )
109adantr 481 . . . . . . . . . . 11  |-  ( ( ( G  e. UHGraph  /\  N  e.  X )  /\  n  e.  ( V  \  { N } ) )  ->  G  e. UHGraph  )
112eleq2i 2693 . . . . . . . . . . . 12  |-  ( e  e.  E  <->  e  e.  (Edg `  G ) )
1211biimpi 206 . . . . . . . . . . 11  |-  ( e  e.  E  ->  e  e.  (Edg `  G )
)
13 edguhgr 26024 . . . . . . . . . . 11  |-  ( ( G  e. UHGraph  /\  e  e.  (Edg `  G )
)  ->  e  e.  ~P (Vtx `  G )
)
1410, 12, 13syl2an 494 . . . . . . . . . 10  |-  ( ( ( ( G  e. UHGraph  /\  N  e.  X
)  /\  n  e.  ( V  \  { N } ) )  /\  e  e.  E )  ->  e  e.  ~P (Vtx `  G ) )
15 selpw 4165 . . . . . . . . . . . 12  |-  ( e  e.  ~P (Vtx `  G )  <->  e  C_  (Vtx `  G ) )
161eqcomi 2631 . . . . . . . . . . . . 13  |-  (Vtx `  G )  =  V
1716sseq2i 3630 . . . . . . . . . . . 12  |-  ( e 
C_  (Vtx `  G
)  <->  e  C_  V
)
1815, 17bitri 264 . . . . . . . . . . 11  |-  ( e  e.  ~P (Vtx `  G )  <->  e  C_  V )
19 sstr 3611 . . . . . . . . . . . . . . 15  |-  ( ( { N ,  n }  C_  e  /\  e  C_  V )  ->  { N ,  n }  C_  V
)
20 vex 3203 . . . . . . . . . . . . . . . . 17  |-  n  e. 
_V
21 prssg 4350 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  X  /\  n  e.  _V )  ->  ( ( N  e.  V  /\  n  e.  V )  <->  { N ,  n }  C_  V
) )
2221bicomd 213 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  X  /\  n  e.  _V )  ->  ( { N ,  n }  C_  V  <->  ( N  e.  V  /\  n  e.  V ) ) )
2320, 22mpan2 707 . . . . . . . . . . . . . . . 16  |-  ( N  e.  X  ->  ( { N ,  n }  C_  V  <->  ( N  e.  V  /\  n  e.  V ) ) )
24 simpl 473 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  V  /\  n  e.  V )  ->  N  e.  V )
2523, 24syl6bi 243 . . . . . . . . . . . . . . 15  |-  ( N  e.  X  ->  ( { N ,  n }  C_  V  ->  N  e.  V ) )
2619, 25syl5com 31 . . . . . . . . . . . . . 14  |-  ( ( { N ,  n }  C_  e  /\  e  C_  V )  ->  ( N  e.  X  ->  N  e.  V ) )
2726ex 450 . . . . . . . . . . . . 13  |-  ( { N ,  n }  C_  e  ->  ( e  C_  V  ->  ( N  e.  X  ->  N  e.  V ) ) )
2827com13 88 . . . . . . . . . . . 12  |-  ( N  e.  X  ->  (
e  C_  V  ->  ( { N ,  n }  C_  e  ->  N  e.  V ) ) )
2928ad3antlr 767 . . . . . . . . . . 11  |-  ( ( ( ( G  e. UHGraph  /\  N  e.  X
)  /\  n  e.  ( V  \  { N } ) )  /\  e  e.  E )  ->  ( e  C_  V  ->  ( { N ,  n }  C_  e  ->  N  e.  V )
) )
3018, 29syl5bi 232 . . . . . . . . . 10  |-  ( ( ( ( G  e. UHGraph  /\  N  e.  X
)  /\  n  e.  ( V  \  { N } ) )  /\  e  e.  E )  ->  ( e  e.  ~P (Vtx `  G )  -> 
( { N ,  n }  C_  e  ->  N  e.  V )
) )
3114, 30mpd 15 . . . . . . . . 9  |-  ( ( ( ( G  e. UHGraph  /\  N  e.  X
)  /\  n  e.  ( V  \  { N } ) )  /\  e  e.  E )  ->  ( { N ,  n }  C_  e  ->  N  e.  V )
)
3231rexlimdva 3031 . . . . . . . 8  |-  ( ( ( G  e. UHGraph  /\  N  e.  X )  /\  n  e.  ( V  \  { N } ) )  -> 
( E. e  e.  E  { N ,  n }  C_  e  ->  N  e.  V )
)
3332con3rr3 151 . . . . . . 7  |-  ( -.  N  e.  V  -> 
( ( ( G  e. UHGraph  /\  N  e.  X
)  /\  n  e.  ( V  \  { N } ) )  ->  -.  E. e  e.  E  { N ,  n }  C_  e ) )
3433expdimp 453 . . . . . 6  |-  ( ( -.  N  e.  V  /\  ( G  e. UHGraph  /\  N  e.  X ) )  -> 
( n  e.  ( V  \  { N } )  ->  -.  E. e  e.  E  { N ,  n }  C_  e ) )
3534ralrimiv 2965 . . . . 5  |-  ( ( -.  N  e.  V  /\  ( G  e. UHGraph  /\  N  e.  X ) )  ->  A. n  e.  ( V  \  { N }
)  -.  E. e  e.  E  { N ,  n }  C_  e
)
36 rabeq0 3957 . . . . 5  |-  ( { n  e.  ( V 
\  { N }
)  |  E. e  e.  E  { N ,  n }  C_  e }  =  (/)  <->  A. n  e.  ( V  \  { N } )  -.  E. e  e.  E  { N ,  n }  C_  e )
3735, 36sylibr 224 . . . 4  |-  ( ( -.  N  e.  V  /\  ( G  e. UHGraph  /\  N  e.  X ) )  ->  { n  e.  ( V  \  { N }
)  |  E. e  e.  E  { N ,  n }  C_  e }  =  (/) )
388, 37eqtr4d 2659 . . 3  |-  ( ( -.  N  e.  V  /\  ( G  e. UHGraph  /\  N  e.  X ) )  -> 
( G NeighbVtx  N )  =  { n  e.  ( V  \  { N } )  |  E. e  e.  E  { N ,  n }  C_  e } )
3938ex 450 . 2  |-  ( -.  N  e.  V  -> 
( ( G  e. UHGraph  /\  N  e.  X
)  ->  ( G NeighbVtx  N )  =  { n  e.  ( V  \  { N } )  |  E. e  e.  E  { N ,  n }  C_  e } ) )
404, 39pm2.61i 176 1  |-  ( ( G  e. UHGraph  /\  N  e.  X )  ->  ( G NeighbVtx  N )  =  {
n  e.  ( V 
\  { N }
)  |  E. e  e.  E  { N ,  n }  C_  e } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    e/ wnel 2897   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   UHGraph cuhgr 25951   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-edg 25940  df-uhgr 25953  df-nbgr 26228
This theorem is referenced by:  uhgrnbgr0nb  26250
  Copyright terms: Public domain W3C validator