Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curfv Structured version   Visualization version   Unicode version

Theorem curfv 33389
Description: Value of currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
curfv  |-  ( ( ( F  Fn  ( V  X.  W )  /\  A  e.  V  /\  B  e.  W )  /\  W  e.  X
)  ->  ( (curry  F `
 A ) `  B )  =  ( A F B ) )

Proof of Theorem curfv
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffn5 6241 . . . . . . . . . 10  |-  ( F  Fn  ( V  X.  W )  <->  F  =  ( z  e.  ( V  X.  W ) 
|->  ( F `  z
) ) )
2 cureq 33385 . . . . . . . . . 10  |-  ( F  =  ( z  e.  ( V  X.  W
)  |->  ( F `  z ) )  -> curry  F  = curry  ( z  e.  ( V  X.  W
)  |->  ( F `  z ) ) )
31, 2sylbi 207 . . . . . . . . 9  |-  ( F  Fn  ( V  X.  W )  -> curry  F  = curry 
( z  e.  ( V  X.  W ) 
|->  ( F `  z
) ) )
43adantr 481 . . . . . . . 8  |-  ( ( F  Fn  ( V  X.  W )  /\  B  e.  W )  -> curry 
F  = curry  ( z  e.  ( V  X.  W
)  |->  ( F `  z ) ) )
5 fveq2 6191 . . . . . . . . . 10  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( F `  <. x ,  y >. )
)
65mpt2mpt 6752 . . . . . . . . 9  |-  ( z  e.  ( V  X.  W )  |->  ( F `
 z ) )  =  ( x  e.  V ,  y  e.  W  |->  ( F `  <. x ,  y >.
) )
7 fvex 6201 . . . . . . . . . . 11  |-  ( F `
 <. x ,  y
>. )  e.  _V
87rgen2w 2925 . . . . . . . . . 10  |-  A. x  e.  V  A. y  e.  W  ( F `  <. x ,  y
>. )  e.  _V
98a1i 11 . . . . . . . . 9  |-  ( ( F  Fn  ( V  X.  W )  /\  B  e.  W )  ->  A. x  e.  V  A. y  e.  W  ( F `  <. x ,  y >. )  e.  _V )
10 ne0i 3921 . . . . . . . . . 10  |-  ( B  e.  W  ->  W  =/=  (/) )
1110adantl 482 . . . . . . . . 9  |-  ( ( F  Fn  ( V  X.  W )  /\  B  e.  W )  ->  W  =/=  (/) )
126, 9, 11mpt2curryd 7395 . . . . . . . 8  |-  ( ( F  Fn  ( V  X.  W )  /\  B  e.  W )  -> curry  ( z  e.  ( V  X.  W ) 
|->  ( F `  z
) )  =  ( x  e.  V  |->  ( y  e.  W  |->  ( F `  <. x ,  y >. )
) ) )
134, 12eqtrd 2656 . . . . . . 7  |-  ( ( F  Fn  ( V  X.  W )  /\  B  e.  W )  -> curry 
F  =  ( x  e.  V  |->  ( y  e.  W  |->  ( F `
 <. x ,  y
>. ) ) ) )
14133adant2 1080 . . . . . 6  |-  ( ( F  Fn  ( V  X.  W )  /\  A  e.  V  /\  B  e.  W )  -> curry 
F  =  ( x  e.  V  |->  ( y  e.  W  |->  ( F `
 <. x ,  y
>. ) ) ) )
1514fveq1d 6193 . . . . 5  |-  ( ( F  Fn  ( V  X.  W )  /\  A  e.  V  /\  B  e.  W )  ->  (curry  F `  A
)  =  ( ( x  e.  V  |->  ( y  e.  W  |->  ( F `  <. x ,  y >. )
) ) `  A
) )
1615adantr 481 . . . 4  |-  ( ( ( F  Fn  ( V  X.  W )  /\  A  e.  V  /\  B  e.  W )  /\  W  e.  X
)  ->  (curry  F `  A )  =  ( ( x  e.  V  |->  ( y  e.  W  |->  ( F `  <. x ,  y >. )
) ) `  A
) )
17 mptexg 6484 . . . . . 6  |-  ( W  e.  X  ->  (
y  e.  W  |->  ( F `  <. A , 
y >. ) )  e. 
_V )
18 opeq1 4402 . . . . . . . . 9  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
1918fveq2d 6195 . . . . . . . 8  |-  ( x  =  A  ->  ( F `  <. x ,  y >. )  =  ( F `  <. A , 
y >. ) )
2019mpteq2dv 4745 . . . . . . 7  |-  ( x  =  A  ->  (
y  e.  W  |->  ( F `  <. x ,  y >. )
)  =  ( y  e.  W  |->  ( F `
 <. A ,  y
>. ) ) )
21 eqid 2622 . . . . . . 7  |-  ( x  e.  V  |->  ( y  e.  W  |->  ( F `
 <. x ,  y
>. ) ) )  =  ( x  e.  V  |->  ( y  e.  W  |->  ( F `  <. x ,  y >. )
) )
2220, 21fvmptg 6280 . . . . . 6  |-  ( ( A  e.  V  /\  ( y  e.  W  |->  ( F `  <. A ,  y >. )
)  e.  _V )  ->  ( ( x  e.  V  |->  ( y  e.  W  |->  ( F `  <. x ,  y >.
) ) ) `  A )  =  ( y  e.  W  |->  ( F `  <. A , 
y >. ) ) )
2317, 22sylan2 491 . . . . 5  |-  ( ( A  e.  V  /\  W  e.  X )  ->  ( ( x  e.  V  |->  ( y  e.  W  |->  ( F `  <. x ,  y >.
) ) ) `  A )  =  ( y  e.  W  |->  ( F `  <. A , 
y >. ) ) )
24233ad2antl2 1224 . . . 4  |-  ( ( ( F  Fn  ( V  X.  W )  /\  A  e.  V  /\  B  e.  W )  /\  W  e.  X
)  ->  ( (
x  e.  V  |->  ( y  e.  W  |->  ( F `  <. x ,  y >. )
) ) `  A
)  =  ( y  e.  W  |->  ( F `
 <. A ,  y
>. ) ) )
2516, 24eqtrd 2656 . . 3  |-  ( ( ( F  Fn  ( V  X.  W )  /\  A  e.  V  /\  B  e.  W )  /\  W  e.  X
)  ->  (curry  F `  A )  =  ( y  e.  W  |->  ( F `  <. A , 
y >. ) ) )
2625fveq1d 6193 . 2  |-  ( ( ( F  Fn  ( V  X.  W )  /\  A  e.  V  /\  B  e.  W )  /\  W  e.  X
)  ->  ( (curry  F `
 A ) `  B )  =  ( ( y  e.  W  |->  ( F `  <. A ,  y >. )
) `  B )
)
27 opeq2 4403 . . . . . . 7  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
2827fveq2d 6195 . . . . . 6  |-  ( y  =  B  ->  ( F `  <. A , 
y >. )  =  ( F `  <. A ,  B >. ) )
29 eqid 2622 . . . . . 6  |-  ( y  e.  W  |->  ( F `
 <. A ,  y
>. ) )  =  ( y  e.  W  |->  ( F `  <. A , 
y >. ) )
30 fvex 6201 . . . . . 6  |-  ( F `
 <. A ,  B >. )  e.  _V
3128, 29, 30fvmpt 6282 . . . . 5  |-  ( B  e.  W  ->  (
( y  e.  W  |->  ( F `  <. A ,  y >. )
) `  B )  =  ( F `  <. A ,  B >. ) )
32 df-ov 6653 . . . . 5  |-  ( A F B )  =  ( F `  <. A ,  B >. )
3331, 32syl6eqr 2674 . . . 4  |-  ( B  e.  W  ->  (
( y  e.  W  |->  ( F `  <. A ,  y >. )
) `  B )  =  ( A F B ) )
34333ad2ant3 1084 . . 3  |-  ( ( F  Fn  ( V  X.  W )  /\  A  e.  V  /\  B  e.  W )  ->  ( ( y  e.  W  |->  ( F `  <. A ,  y >.
) ) `  B
)  =  ( A F B ) )
3534adantr 481 . 2  |-  ( ( ( F  Fn  ( V  X.  W )  /\  A  e.  V  /\  B  e.  W )  /\  W  e.  X
)  ->  ( (
y  e.  W  |->  ( F `  <. A , 
y >. ) ) `  B )  =  ( A F B ) )
3626, 35eqtrd 2656 1  |-  ( ( ( F  Fn  ( V  X.  W )  /\  A  e.  V  /\  B  e.  W )  /\  W  e.  X
)  ->  ( (curry  F `
 A ) `  B )  =  ( A F B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   (/)c0 3915   <.cop 4183    |-> cmpt 4729    X. cxp 5112    Fn wfn 5883   ` cfv 5888  (class class class)co 6650  curry ccur 7391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cur 7393
This theorem is referenced by:  unccur  33392  matunitlindflem1  33405  matunitlindflem2  33406
  Copyright terms: Public domain W3C validator