MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1 Structured version   Visualization version   Unicode version

Theorem en1 8023
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
en1  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
Distinct variable group:    x, A

Proof of Theorem en1
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df1o2 7572 . . . . 5  |-  1o  =  { (/) }
21breq2i 4661 . . . 4  |-  ( A 
~~  1o  <->  A  ~~  { (/) } )
3 bren 7964 . . . 4  |-  ( A 
~~  { (/) }  <->  E. f 
f : A -1-1-onto-> { (/) } )
42, 3bitri 264 . . 3  |-  ( A 
~~  1o  <->  E. f  f : A -1-1-onto-> { (/) } )
5 f1ocnv 6149 . . . . 5  |-  ( f : A -1-1-onto-> { (/) }  ->  `' f : { (/) } -1-1-onto-> A )
6 f1ofo 6144 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f : { (/) } -onto-> A )
7 forn 6118 . . . . . . 7  |-  ( `' f : { (/) }
-onto-> A  ->  ran  `' f  =  A )
86, 7syl 17 . . . . . 6  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  A )
9 f1of 6137 . . . . . . . . 9  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f : { (/) } --> A )
10 0ex 4790 . . . . . . . . . . 11  |-  (/)  e.  _V
1110fsn2 6403 . . . . . . . . . 10  |-  ( `' f : { (/) } --> A  <->  ( ( `' f `  (/) )  e.  A  /\  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } ) )
1211simprbi 480 . . . . . . . . 9  |-  ( `' f : { (/) } --> A  ->  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } )
139, 12syl 17 . . . . . . . 8  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } )
1413rneqd 5353 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  ran  { <. (/) ,  ( `' f `  (/) ) >. } )
1510rnsnop 5616 . . . . . . 7  |-  ran  { <.
(/) ,  ( `' f `  (/) ) >. }  =  { ( `' f `  (/) ) }
1614, 15syl6eq 2672 . . . . . 6  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  { ( `' f `
 (/) ) } )
178, 16eqtr3d 2658 . . . . 5  |-  ( `' f : { (/) } -1-1-onto-> A  ->  A  =  {
( `' f `  (/) ) } )
18 fvex 6201 . . . . . 6  |-  ( `' f `  (/) )  e. 
_V
19 sneq 4187 . . . . . . 7  |-  ( x  =  ( `' f `
 (/) )  ->  { x }  =  { ( `' f `  (/) ) } )
2019eqeq2d 2632 . . . . . 6  |-  ( x  =  ( `' f `
 (/) )  ->  ( A  =  { x } 
<->  A  =  { ( `' f `  (/) ) } ) )
2118, 20spcev 3300 . . . . 5  |-  ( A  =  { ( `' f `  (/) ) }  ->  E. x  A  =  { x } )
225, 17, 213syl 18 . . . 4  |-  ( f : A -1-1-onto-> { (/) }  ->  E. x  A  =  { x } )
2322exlimiv 1858 . . 3  |-  ( E. f  f : A -1-1-onto-> { (/)
}  ->  E. x  A  =  { x } )
244, 23sylbi 207 . 2  |-  ( A 
~~  1o  ->  E. x  A  =  { x } )
25 vex 3203 . . . . 5  |-  x  e. 
_V
2625ensn1 8020 . . . 4  |-  { x }  ~~  1o
27 breq1 4656 . . . 4  |-  ( A  =  { x }  ->  ( A  ~~  1o  <->  { x }  ~~  1o ) )
2826, 27mpbiri 248 . . 3  |-  ( A  =  { x }  ->  A  ~~  1o )
2928exlimiv 1858 . 2  |-  ( E. x  A  =  {
x }  ->  A  ~~  1o )
3024, 29impbii 199 1  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483   E.wex 1704    e. wcel 1990   (/)c0 3915   {csn 4177   <.cop 4183   class class class wbr 4653   `'ccnv 5113   ran crn 5115   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888   1oc1o 7553    ~~ cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-en 7956
This theorem is referenced by:  en1b  8024  reuen1  8025  en2  8196  card1  8794  pm54.43  8826  hash1snb  13207  ufildom1  21730
  Copyright terms: Public domain W3C validator