MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrle Structured version   Visualization version   Unicode version

Theorem upgrle 25985
Description: An edge of an undirected pseudograph has at most two ends. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v  |-  V  =  (Vtx `  G )
isupgr.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
upgrle  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( # `  ( E `  F )
)  <_  2 )

Proof of Theorem upgrle
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isupgr.v . . . . 5  |-  V  =  (Vtx `  G )
2 isupgr.e . . . . 5  |-  E  =  (iEdg `  G )
31, 2upgrfn 25982 . . . 4  |-  ( ( G  e. UPGraph  /\  E  Fn  A )  ->  E : A --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
43ffvelrnda 6359 . . 3  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A )  /\  F  e.  A )  ->  ( E `  F )  e.  { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } )
543impa 1259 . 2  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  e.  {
x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
6 fveq2 6191 . . . . 5  |-  ( x  =  ( E `  F )  ->  ( # `
 x )  =  ( # `  ( E `  F )
) )
76breq1d 4663 . . . 4  |-  ( x  =  ( E `  F )  ->  (
( # `  x )  <_  2  <->  ( # `  ( E `  F )
)  <_  2 ) )
87elrab 3363 . . 3  |-  ( ( E `  F )  e.  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  <->  ( ( E `  F
)  e.  ( ~P V  \  { (/) } )  /\  ( # `  ( E `  F
) )  <_  2
) )
98simprbi 480 . 2  |-  ( ( E `  F )  e.  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  ->  ( # `  ( E `  F )
)  <_  2 )
105, 9syl 17 1  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( # `  ( E `  F )
)  <_  2 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916    \ cdif 3571   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653    Fn wfn 5883   ` cfv 5888    <_ cle 10075   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-upgr 25977
This theorem is referenced by:  upgrfi  25986  upgrex  25987  upgrle2  26000  subupgr  26179  upgrewlkle2  26502
  Copyright terms: Public domain W3C validator