MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrex Structured version   Visualization version   Unicode version

Theorem upgrex 25987
Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v  |-  V  =  (Vtx `  G )
isupgr.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
upgrex  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x  e.  V  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
Distinct variable groups:    x, G    x, V    x, E    x, F    x, A, y    y, E    y, F    y, G    y, V

Proof of Theorem upgrex
StepHypRef Expression
1 isupgr.v . . . . 5  |-  V  =  (Vtx `  G )
2 isupgr.e . . . . 5  |-  E  =  (iEdg `  G )
31, 2upgrn0 25984 . . . 4  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  =/=  (/) )
4 n0 3931 . . . 4  |-  ( ( E `  F )  =/=  (/)  <->  E. x  x  e.  ( E `  F
) )
53, 4sylib 208 . . 3  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x  x  e.  ( E `  F ) )
6 simp1 1061 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  G  e. UPGraph  )
7 fndm 5990 . . . . . . . . . . . . 13  |-  ( E  Fn  A  ->  dom  E  =  A )
87eqcomd 2628 . . . . . . . . . . . 12  |-  ( E  Fn  A  ->  A  =  dom  E )
98eleq2d 2687 . . . . . . . . . . 11  |-  ( E  Fn  A  ->  ( F  e.  A  <->  F  e.  dom  E ) )
109biimpd 219 . . . . . . . . . 10  |-  ( E  Fn  A  ->  ( F  e.  A  ->  F  e.  dom  E ) )
1110a1i 11 . . . . . . . . 9  |-  ( G  e. UPGraph  ->  ( E  Fn  A  ->  ( F  e.  A  ->  F  e.  dom  E ) ) )
12113imp 1256 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  F  e.  dom  E )
131, 2upgrss 25983 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  F  e. 
dom  E )  -> 
( E `  F
)  C_  V )
146, 12, 13syl2anc 693 . . . . . . 7  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  C_  V
)
1514sselda 3603 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F
) )  ->  x  e.  V )
1615adantr 481 . . . . . . . 8  |-  ( ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  ->  x  e.  V )
17 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  -> 
( ( E `  F )  \  {
x } )  =  (/) )
18 ssdif0 3942 . . . . . . . . . 10  |-  ( ( E `  F ) 
C_  { x }  <->  ( ( E `  F
)  \  { x } )  =  (/) )
1917, 18sylibr 224 . . . . . . . . 9  |-  ( ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  -> 
( E `  F
)  C_  { x } )
20 simpr 477 . . . . . . . . . . 11  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F
) )  ->  x  e.  ( E `  F
) )
2120snssd 4340 . . . . . . . . . 10  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F
) )  ->  { x }  C_  ( E `  F ) )
2221adantr 481 . . . . . . . . 9  |-  ( ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  ->  { x }  C_  ( E `  F ) )
2319, 22eqssd 3620 . . . . . . . 8  |-  ( ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  -> 
( E `  F
)  =  { x } )
24 preq2 4269 . . . . . . . . . . 11  |-  ( y  =  x  ->  { x ,  y }  =  { x ,  x } )
25 dfsn2 4190 . . . . . . . . . . 11  |-  { x }  =  { x ,  x }
2624, 25syl6eqr 2674 . . . . . . . . . 10  |-  ( y  =  x  ->  { x ,  y }  =  { x } )
2726eqeq2d 2632 . . . . . . . . 9  |-  ( y  =  x  ->  (
( E `  F
)  =  { x ,  y }  <->  ( E `  F )  =  {
x } ) )
2827rspcev 3309 . . . . . . . 8  |-  ( ( x  e.  V  /\  ( E `  F )  =  { x }
)  ->  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
2916, 23, 28syl2anc 693 . . . . . . 7  |-  ( ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  ->  E. y  e.  V  ( E `  F )  =  { x ,  y } )
30 n0 3931 . . . . . . . 8  |-  ( ( ( E `  F
)  \  { x } )  =/=  (/)  <->  E. y 
y  e.  ( ( E `  F ) 
\  { x }
) )
3114adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  ( E `  F )  C_  V )
32 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  y  e.  ( ( E `  F )  \  {
x } ) )
3332eldifad 3586 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  y  e.  ( E `  F
) )
3431, 33sseldd 3604 . . . . . . . . . . . . 13  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  y  e.  V )
351, 2upgrfi 25986 . . . . . . . . . . . . . . . 16  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  e.  Fin )
3635adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  ( E `  F )  e.  Fin )
37 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  x  e.  ( E `  F
) )
3837, 33prssd 4354 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  { x ,  y }  C_  ( E `  F ) )
39 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( E `
 F )  e. 
_V
40 ssdomg 8001 . . . . . . . . . . . . . . . . 17  |-  ( ( E `  F )  e.  _V  ->  ( { x ,  y }  C_  ( E `  F )  ->  { x ,  y }  ~<_  ( E `
 F ) ) )
4139, 38, 40mpsyl 68 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  { x ,  y }  ~<_  ( E `
 F ) )
421, 2upgrle 25985 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( # `  ( E `  F )
)  <_  2 )
4342adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  ( # `
 ( E `  F ) )  <_ 
2 )
44 eldifsni 4320 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( ( E `
 F )  \  { x } )  ->  y  =/=  x
)
4544ad2antll 765 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  y  =/=  x )
4645necomd 2849 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  x  =/=  y )
47 vex 3203 . . . . . . . . . . . . . . . . . . . 20  |-  x  e. 
_V
48 vex 3203 . . . . . . . . . . . . . . . . . . . 20  |-  y  e. 
_V
49 hashprg 13182 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ( x  =/=  y  <->  (
# `  { x ,  y } )  =  2 ) )
5047, 48, 49mp2an 708 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =/=  y  <->  ( # `  {
x ,  y } )  =  2 )
5146, 50sylib 208 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  ( # `
 { x ,  y } )  =  2 )
5243, 51breqtrrd 4681 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  ( # `
 ( E `  F ) )  <_ 
( # `  { x ,  y } ) )
53 prfi 8235 . . . . . . . . . . . . . . . . . 18  |-  { x ,  y }  e.  Fin
54 hashdom 13168 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( E `  F
)  e.  Fin  /\  { x ,  y }  e.  Fin )  -> 
( ( # `  ( E `  F )
)  <_  ( # `  {
x ,  y } )  <->  ( E `  F )  ~<_  { x ,  y } ) )
5536, 53, 54sylancl 694 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  (
( # `  ( E `
 F ) )  <_  ( # `  {
x ,  y } )  <->  ( E `  F )  ~<_  { x ,  y } ) )
5652, 55mpbid 222 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  ( E `  F )  ~<_  { x ,  y } )
57 sbth 8080 . . . . . . . . . . . . . . . 16  |-  ( ( { x ,  y }  ~<_  ( E `  F )  /\  ( E `  F )  ~<_  { x ,  y } )  ->  { x ,  y }  ~~  ( E `  F ) )
5841, 56, 57syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  { x ,  y }  ~~  ( E `  F ) )
59 fisseneq 8171 . . . . . . . . . . . . . . 15  |-  ( ( ( E `  F
)  e.  Fin  /\  { x ,  y } 
C_  ( E `  F )  /\  {
x ,  y } 
~~  ( E `  F ) )  ->  { x ,  y }  =  ( E `
 F ) )
6036, 38, 58, 59syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  { x ,  y }  =  ( E `  F ) )
6160eqcomd 2628 . . . . . . . . . . . . 13  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  ( E `  F )  =  { x ,  y } )
6234, 61jca 554 . . . . . . . . . . . 12  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  (
x  e.  ( E `
 F )  /\  y  e.  ( ( E `  F )  \  { x } ) ) )  ->  (
y  e.  V  /\  ( E `  F )  =  { x ,  y } ) )
6362expr 643 . . . . . . . . . . 11  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F
) )  ->  (
y  e.  ( ( E `  F ) 
\  { x }
)  ->  ( y  e.  V  /\  ( E `  F )  =  { x ,  y } ) ) )
6463eximdv 1846 . . . . . . . . . 10  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F
) )  ->  ( E. y  y  e.  ( ( E `  F )  \  {
x } )  ->  E. y ( y  e.  V  /\  ( E `
 F )  =  { x ,  y } ) ) )
6564imp 445 . . . . . . . . 9  |-  ( ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  E. y 
y  e.  ( ( E `  F ) 
\  { x }
) )  ->  E. y
( y  e.  V  /\  ( E `  F
)  =  { x ,  y } ) )
66 df-rex 2918 . . . . . . . . 9  |-  ( E. y  e.  V  ( E `  F )  =  { x ,  y }  <->  E. y
( y  e.  V  /\  ( E `  F
)  =  { x ,  y } ) )
6765, 66sylibr 224 . . . . . . . 8  |-  ( ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  E. y 
y  e.  ( ( E `  F ) 
\  { x }
) )  ->  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
6830, 67sylan2b 492 . . . . . . 7  |-  ( ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =/=  (/) )  ->  E. y  e.  V  ( E `  F )  =  { x ,  y } )
6929, 68pm2.61dane 2881 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F
) )  ->  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
7015, 69jca 554 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F
) )  ->  (
x  e.  V  /\  E. y  e.  V  ( E `  F )  =  { x ,  y } ) )
7170ex 450 . . . 4  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( x  e.  ( E `  F
)  ->  ( x  e.  V  /\  E. y  e.  V  ( E `  F )  =  {
x ,  y } ) ) )
7271eximdv 1846 . . 3  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E. x  x  e.  ( E `  F )  ->  E. x ( x  e.  V  /\  E. y  e.  V  ( E `  F )  =  { x ,  y } ) ) )
735, 72mpd 15 . 2  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x
( x  e.  V  /\  E. y  e.  V  ( E `  F )  =  { x ,  y } ) )
74 df-rex 2918 . 2  |-  ( E. x  e.  V  E. y  e.  V  ( E `  F )  =  { x ,  y }  <->  E. x ( x  e.  V  /\  E. y  e.  V  ( E `  F )  =  { x ,  y } ) )
7573, 74sylibr 224 1  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x  e.  V  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   class class class wbr 4653   dom cdm 5114    Fn wfn 5883   ` cfv 5888    ~~ cen 7952    ~<_ cdom 7953   Fincfn 7955    <_ cle 10075   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-upgr 25977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator