MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrf1oedg Structured version   Visualization version   Unicode version

Theorem usgrf1oedg 26099
Description: The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgrf1oedg.i  |-  I  =  (iEdg `  G )
usgrf1oedg.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
usgrf1oedg  |-  ( G  e. USGraph  ->  I : dom  I
-1-1-onto-> E )

Proof of Theorem usgrf1oedg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
2 usgrf1oedg.i . . . 4  |-  I  =  (iEdg `  G )
31, 2usgrf 26050 . . 3  |-  ( G  e. USGraph  ->  I : dom  I -1-1-> { x  e.  ( ~P (Vtx `  G
)  \  { (/) } )  |  ( # `  x
)  =  2 } )
4 f1f1orn 6148 . . 3  |-  ( I : dom  I -1-1-> {
x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  =  2 }  ->  I : dom  I
-1-1-onto-> ran  I )
53, 4syl 17 . 2  |-  ( G  e. USGraph  ->  I : dom  I
-1-1-onto-> ran  I )
6 usgrf1oedg.e . . . 4  |-  E  =  (Edg `  G )
7 edgval 25941 . . . . . 6  |-  (Edg `  G )  =  ran  (iEdg `  G )
87a1i 11 . . . . 5  |-  ( G  e. USGraph  ->  (Edg `  G
)  =  ran  (iEdg `  G ) )
92eqcomi 2631 . . . . . 6  |-  (iEdg `  G )  =  I
109rneqi 5352 . . . . 5  |-  ran  (iEdg `  G )  =  ran  I
118, 10syl6eq 2672 . . . 4  |-  ( G  e. USGraph  ->  (Edg `  G
)  =  ran  I
)
126, 11syl5eq 2668 . . 3  |-  ( G  e. USGraph  ->  E  =  ran  I )
1312f1oeq3d 6134 . 2  |-  ( G  e. USGraph  ->  ( I : dom  I -1-1-onto-> E  <->  I : dom  I
-1-1-onto-> ran  I ) )
145, 13mpbird 247 1  |-  ( G  e. USGraph  ->  I : dom  I
-1-1-onto-> E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916    \ cdif 3571   (/)c0 3915   ~Pcpw 4158   {csn 4177   dom cdm 5114   ran crn 5115   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   USGraph cusgr 26044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-edg 25940  df-usgr 26046
This theorem is referenced by:  usgr2trlncl  26656
  Copyright terms: Public domain W3C validator