MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2trlncl Structured version   Visualization version   Unicode version

Theorem usgr2trlncl 26656
Description: In a simple graph, any trail of length 2 does not start and end at the same vertex. (Contributed by AV, 5-Jun-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
usgr2trlncl  |-  ( ( G  e. USGraph  /\  ( # `
 F )  =  2 )  ->  ( F (Trails `  G ) P  ->  ( P ` 
0 )  =/=  ( P `  2 )
) )

Proof of Theorem usgr2trlncl
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 usgrupgr 26077 . . . . 5  |-  ( G  e. USGraph  ->  G  e. UPGraph  )
2 eqid 2622 . . . . . 6  |-  (Vtx `  G )  =  (Vtx
`  G )
3 eqid 2622 . . . . . 6  |-  (iEdg `  G )  =  (iEdg `  G )
42, 3upgrf1istrl 26600 . . . . 5  |-  ( G  e. UPGraph  ->  ( F (Trails `  G ) P  <->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
51, 4syl 17 . . . 4  |-  ( G  e. USGraph  ->  ( F (Trails `  G ) P  <->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )
6 eqidd 2623 . . . . . . . . . . . 12  |-  ( (
# `  F )  =  2  ->  F  =  F )
7 oveq2 6658 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  2  ->  (
0..^ ( # `  F
) )  =  ( 0..^ 2 ) )
8 fzo0to2pr 12553 . . . . . . . . . . . . 13  |-  ( 0..^ 2 )  =  {
0 ,  1 }
97, 8syl6eq 2672 . . . . . . . . . . . 12  |-  ( (
# `  F )  =  2  ->  (
0..^ ( # `  F
) )  =  {
0 ,  1 } )
10 eqidd 2623 . . . . . . . . . . . 12  |-  ( (
# `  F )  =  2  ->  dom  (iEdg `  G )  =  dom  (iEdg `  G
) )
116, 9, 10f1eq123d 6131 . . . . . . . . . . 11  |-  ( (
# `  F )  =  2  ->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  (iEdg `  G
)  <->  F : { 0 ,  1 } -1-1-> dom  (iEdg `  G ) ) )
129raleqdv 3144 . . . . . . . . . . . 12  |-  ( (
# `  F )  =  2  ->  ( A. i  e.  (
0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  <->  A. i  e.  { 0 ,  1 }  ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
13 2wlklem 26563 . . . . . . . . . . . 12  |-  ( A. i  e.  { 0 ,  1 }  (
(iEdg `  G ) `  ( F `  i
) )  =  {
( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  <-> 
( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } ) )
1412, 13syl6bb 276 . . . . . . . . . . 11  |-  ( (
# `  F )  =  2  ->  ( A. i  e.  (
0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  <->  ( (
(iEdg `  G ) `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) }  /\  ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )
1511, 14anbi12d 747 . . . . . . . . . 10  |-  ( (
# `  F )  =  2  ->  (
( F : ( 0..^ ( # `  F
) ) -1-1-> dom  (iEdg `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  <-> 
( F : {
0 ,  1 }
-1-1-> dom  (iEdg `  G
)  /\  ( (
(iEdg `  G ) `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) }  /\  ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) ) )
1615adantl 482 . . . . . . . . 9  |-  ( ( G  e. USGraph  /\  ( # `
 F )  =  2 )  ->  (
( F : ( 0..^ ( # `  F
) ) -1-1-> dom  (iEdg `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  <-> 
( F : {
0 ,  1 }
-1-1-> dom  (iEdg `  G
)  /\  ( (
(iEdg `  G ) `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) }  /\  ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) ) )
17 c0ex 10034 . . . . . . . . . . . . . 14  |-  0  e.  _V
18 1ex 10035 . . . . . . . . . . . . . 14  |-  1  e.  _V
1917, 18pm3.2i 471 . . . . . . . . . . . . 13  |-  ( 0  e.  _V  /\  1  e.  _V )
20 0ne1 11088 . . . . . . . . . . . . 13  |-  0  =/=  1
21 eqid 2622 . . . . . . . . . . . . . 14  |-  { 0 ,  1 }  =  { 0 ,  1 }
2221f12dfv 6529 . . . . . . . . . . . . 13  |-  ( ( ( 0  e.  _V  /\  1  e.  _V )  /\  0  =/=  1
)  ->  ( F : { 0 ,  1 } -1-1-> dom  (iEdg `  G
)  <->  ( F : { 0 ,  1 } --> dom  (iEdg `  G
)  /\  ( F `  0 )  =/=  ( F `  1
) ) ) )
2319, 20, 22mp2an 708 . . . . . . . . . . . 12  |-  ( F : { 0 ,  1 } -1-1-> dom  (iEdg `  G )  <->  ( F : { 0 ,  1 } --> dom  (iEdg `  G
)  /\  ( F `  0 )  =/=  ( F `  1
) ) )
24 eqid 2622 . . . . . . . . . . . . . 14  |-  (Edg `  G )  =  (Edg
`  G )
253, 24usgrf1oedg 26099 . . . . . . . . . . . . 13  |-  ( G  e. USGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-onto-> (Edg `  G )
)
26 f1of1 6136 . . . . . . . . . . . . . 14  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-onto-> (Edg `  G )  ->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> (Edg
`  G ) )
27 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( F : { 0 ,  1 } --> dom  (iEdg `  G )  ->  F : { 0 ,  1 } --> dom  (iEdg `  G
) )
2817prid1 4297 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  0  e.  { 0 ,  1 }
2928a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( F : { 0 ,  1 } --> dom  (iEdg `  G )  ->  0  e.  { 0 ,  1 } )
3027, 29ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( F : { 0 ,  1 } --> dom  (iEdg `  G )  ->  ( F `  0 )  e.  dom  (iEdg `  G
) )
3118prid2 4298 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  1  e.  { 0 ,  1 }
3231a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( F : { 0 ,  1 } --> dom  (iEdg `  G )  ->  1  e.  { 0 ,  1 } )
3327, 32ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( F : { 0 ,  1 } --> dom  (iEdg `  G )  ->  ( F `  1 )  e.  dom  (iEdg `  G
) )
3430, 33jca 554 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( F : { 0 ,  1 } --> dom  (iEdg `  G )  ->  (
( F `  0
)  e.  dom  (iEdg `  G )  /\  ( F `  1 )  e.  dom  (iEdg `  G
) ) )
3534anim2i 593 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> (Edg `  G )  /\  F : { 0 ,  1 } --> dom  (iEdg `  G ) )  -> 
( (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> (Edg `  G )  /\  (
( F `  0
)  e.  dom  (iEdg `  G )  /\  ( F `  1 )  e.  dom  (iEdg `  G
) ) ) )
3635ancoms 469 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : { 0 ,  1 } --> dom  (iEdg `  G )  /\  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> (Edg
`  G ) )  ->  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> (Edg
`  G )  /\  ( ( F ` 
0 )  e.  dom  (iEdg `  G )  /\  ( F `  1 )  e.  dom  (iEdg `  G ) ) ) )
37 f1veqaeq 6514 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> (Edg `  G )  /\  ( ( F ` 
0 )  e.  dom  (iEdg `  G )  /\  ( F `  1 )  e.  dom  (iEdg `  G ) ) )  ->  ( ( (iEdg `  G ) `  ( F `  0 )
)  =  ( (iEdg `  G ) `  ( F `  1 )
)  ->  ( F `  0 )  =  ( F `  1
) ) )
3836, 37syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : { 0 ,  1 } --> dom  (iEdg `  G )  /\  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> (Edg
`  G ) )  ->  ( ( (iEdg `  G ) `  ( F `  0 )
)  =  ( (iEdg `  G ) `  ( F `  1 )
)  ->  ( F `  0 )  =  ( F `  1
) ) )
3938necon3d 2815 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : { 0 ,  1 } --> dom  (iEdg `  G )  /\  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> (Edg
`  G ) )  ->  ( ( F `
 0 )  =/=  ( F `  1
)  ->  ( (iEdg `  G ) `  ( F `  0 )
)  =/=  ( (iEdg `  G ) `  ( F `  1 )
) ) )
40 simpl 473 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) } )
41 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } )
4240, 41neeq12d 2855 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( (
(iEdg `  G ) `  ( F `  0
) )  =/=  (
(iEdg `  G ) `  ( F `  1
) )  <->  { ( P `  0 ) ,  ( P ` 
1 ) }  =/=  { ( P `  1
) ,  ( P `
 2 ) } ) )
43 preq1 4268 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P `  0 )  =  ( P ` 
2 )  ->  { ( P `  0 ) ,  ( P ` 
1 ) }  =  { ( P ` 
2 ) ,  ( P `  1 ) } )
44 prcom 4267 . . . . . . . . . . . . . . . . . . . . . . 23  |-  { ( P `  2 ) ,  ( P ` 
1 ) }  =  { ( P ` 
1 ) ,  ( P `  2 ) }
4543, 44syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P `  0 )  =  ( P ` 
2 )  ->  { ( P `  0 ) ,  ( P ` 
1 ) }  =  { ( P ` 
1 ) ,  ( P `  2 ) } )
4645necon3i 2826 . . . . . . . . . . . . . . . . . . . . 21  |-  ( { ( P `  0
) ,  ( P `
 1 ) }  =/=  { ( P `
 1 ) ,  ( P `  2
) }  ->  ( P `  0 )  =/=  ( P `  2
) )
4742, 46syl6bi 243 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( (
(iEdg `  G ) `  ( F `  0
) )  =/=  (
(iEdg `  G ) `  ( F `  1
) )  ->  ( P `  0 )  =/=  ( P `  2
) ) )
4847com12 32 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (iEdg `  G ) `  ( F `  0
) )  =/=  (
(iEdg `  G ) `  ( F `  1
) )  ->  (
( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( P `  0 )  =/=  ( P `  2
) ) )
4948a1d 25 . . . . . . . . . . . . . . . . . 18  |-  ( ( (iEdg `  G ) `  ( F `  0
) )  =/=  (
(iEdg `  G ) `  ( F `  1
) )  ->  ( G  e. USGraph  ->  ( ( ( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( P `  0 )  =/=  ( P `  2
) ) ) )
5039, 49syl6 35 . . . . . . . . . . . . . . . . 17  |-  ( ( F : { 0 ,  1 } --> dom  (iEdg `  G )  /\  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> (Edg
`  G ) )  ->  ( ( F `
 0 )  =/=  ( F `  1
)  ->  ( G  e. USGraph  ->  ( ( ( (iEdg `  G ) `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) }  /\  ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } )  ->  ( P ` 
0 )  =/=  ( P `  2 )
) ) ) )
5150expcom 451 . . . . . . . . . . . . . . . 16  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> (Edg
`  G )  -> 
( F : {
0 ,  1 } --> dom  (iEdg `  G
)  ->  ( ( F `  0 )  =/=  ( F `  1
)  ->  ( G  e. USGraph  ->  ( ( ( (iEdg `  G ) `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) }  /\  ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } )  ->  ( P ` 
0 )  =/=  ( P `  2 )
) ) ) ) )
5251impd 447 . . . . . . . . . . . . . . 15  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> (Edg
`  G )  -> 
( ( F : { 0 ,  1 } --> dom  (iEdg `  G
)  /\  ( F `  0 )  =/=  ( F `  1
) )  ->  ( G  e. USGraph  ->  ( ( ( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( P `  0 )  =/=  ( P `  2
) ) ) ) )
5352com23 86 . . . . . . . . . . . . . 14  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> (Edg
`  G )  -> 
( G  e. USGraph  ->  ( ( F : {
0 ,  1 } --> dom  (iEdg `  G
)  /\  ( F `  0 )  =/=  ( F `  1
) )  ->  (
( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( P `  0 )  =/=  ( P `  2
) ) ) ) )
5426, 53syl 17 . . . . . . . . . . . . 13  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-onto-> (Edg `  G )  ->  ( G  e. USGraph  ->  ( ( F : { 0 ,  1 } --> dom  (iEdg `  G )  /\  ( F `  0 )  =/=  ( F `  1
) )  ->  (
( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( P `  0 )  =/=  ( P `  2
) ) ) ) )
5525, 54mpcom 38 . . . . . . . . . . . 12  |-  ( G  e. USGraph  ->  ( ( F : { 0 ,  1 } --> dom  (iEdg `  G )  /\  ( F `  0 )  =/=  ( F `  1
) )  ->  (
( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( P `  0 )  =/=  ( P `  2
) ) ) )
5623, 55syl5bi 232 . . . . . . . . . . 11  |-  ( G  e. USGraph  ->  ( F : { 0 ,  1 } -1-1-> dom  (iEdg `  G
)  ->  ( (
( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( P `  0 )  =/=  ( P `  2
) ) ) )
5756impd 447 . . . . . . . . . 10  |-  ( G  e. USGraph  ->  ( ( F : { 0 ,  1 } -1-1-> dom  (iEdg `  G )  /\  (
( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } ) )  ->  ( P `  0 )  =/=  ( P `  2
) ) )
5857adantr 481 . . . . . . . . 9  |-  ( ( G  e. USGraph  /\  ( # `
 F )  =  2 )  ->  (
( F : {
0 ,  1 }
-1-1-> dom  (iEdg `  G
)  /\  ( (
(iEdg `  G ) `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) }  /\  ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) )  ->  ( P `  0 )  =/=  ( P `  2
) ) )
5916, 58sylbid 230 . . . . . . . 8  |-  ( ( G  e. USGraph  /\  ( # `
 F )  =  2 )  ->  (
( F : ( 0..^ ( # `  F
) ) -1-1-> dom  (iEdg `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  ( P ` 
0 )  =/=  ( P `  2 )
) )
6059com12 32 . . . . . . 7  |-  ( ( F : ( 0..^ ( # `  F
) ) -1-1-> dom  (iEdg `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  ( ( G  e. USGraph  /\  ( # `  F
)  =  2 )  ->  ( P ` 
0 )  =/=  ( P `  2 )
) )
61603adant2 1080 . . . . . 6  |-  ( ( F : ( 0..^ ( # `  F
) ) -1-1-> dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  ( ( G  e. USGraph  /\  ( # `  F
)  =  2 )  ->  ( P ` 
0 )  =/=  ( P `  2 )
) )
6261expdcom 455 . . . . 5  |-  ( G  e. USGraph  ->  ( ( # `  F )  =  2  ->  ( ( F : ( 0..^ (
# `  F )
) -1-1-> dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  ( P ` 
0 )  =/=  ( P `  2 )
) ) )
6362com23 86 . . . 4  |-  ( G  e. USGraph  ->  ( ( F : ( 0..^ (
# `  F )
) -1-1-> dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  ( ( # `  F )  =  2  ->  ( P ` 
0 )  =/=  ( P `  2 )
) ) )
645, 63sylbid 230 . . 3  |-  ( G  e. USGraph  ->  ( F (Trails `  G ) P  -> 
( ( # `  F
)  =  2  -> 
( P `  0
)  =/=  ( P `
 2 ) ) ) )
6564com23 86 . 2  |-  ( G  e. USGraph  ->  ( ( # `  F )  =  2  ->  ( F (Trails `  G ) P  -> 
( P `  0
)  =/=  ( P `
 2 ) ) ) )
6665imp 445 1  |-  ( ( G  e. USGraph  /\  ( # `
 F )  =  2 )  ->  ( F (Trails `  G ) P  ->  ( P ` 
0 )  =/=  ( P `  2 )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   {cpr 4179   class class class wbr 4653   dom cdm 5114   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   2c2 11070   ...cfz 12326  ..^cfzo 12465   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UPGraph cupgr 25975   USGraph cusgr 26044  Trailsctrls 26587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-usgr 26046  df-wlks 26495  df-trls 26589
This theorem is referenced by:  usgr2trlspth  26657  usgr2trlncrct  26698
  Copyright terms: Public domain W3C validator