MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ushgredgedgloop Structured version   Visualization version   Unicode version

Theorem ushgredgedgloop 26123
Description: In a simple hypergraph there is a 1-1 onto mapping between the indexed edges being loops at a fixed vertex and the set of loops at this vertex. (Contributed by AV, 11-Dec-2020.)
Hypotheses
Ref Expression
ushgredgedgloop.e  |-  E  =  (Edg `  G )
ushgredgedgloop.i  |-  I  =  (iEdg `  G )
ushgredgedgloop.v  |-  V  =  (Vtx `  G )
ushgredgedgloop.a  |-  A  =  { i  e.  dom  I  |  ( I `  i )  =  { N } }
ushgredgedgloop.b  |-  B  =  { e  e.  E  |  e  =  { N } }
ushgredgedgloop.f  |-  F  =  ( x  e.  A  |->  ( I `  x
) )
Assertion
Ref Expression
ushgredgedgloop  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  F : A -1-1-onto-> B )
Distinct variable groups:    B, e    e, E, i    e, G, i, x    e, I, i, x    e, N, i, x    e, V, i, x
Allowed substitution hints:    A( x, e, i)    B( x, i)    E( x)    F( x, e, i)

Proof of Theorem ushgredgedgloop
Dummy variables  f 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  (Vtx `  G )  =  (Vtx
`  G )
2 ushgredgedgloop.i . . . . 5  |-  I  =  (iEdg `  G )
31, 2ushgrf 25958 . . . 4  |-  ( G  e. USHGraph  ->  I : dom  I -1-1-> ( ~P (Vtx `  G )  \  { (/)
} ) )
43adantr 481 . . 3  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  I : dom  I -1-1-> ( ~P (Vtx `  G )  \  { (/) } ) )
5 ssrab2 3687 . . 3  |-  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  C_  dom  I
6 f1ores 6151 . . 3  |-  ( ( I : dom  I -1-1-> ( ~P (Vtx `  G )  \  { (/)
} )  /\  {
i  e.  dom  I  |  ( I `  i )  =  { N } }  C_  dom  I )  ->  (
I  |`  { i  e. 
dom  I  |  ( I `  i )  =  { N } } ) : {
i  e.  dom  I  |  ( I `  i )  =  { N } } -1-1-onto-> ( I " {
i  e.  dom  I  |  ( I `  i )  =  { N } } ) )
74, 5, 6sylancl 694 . 2  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
I  |`  { i  e. 
dom  I  |  ( I `  i )  =  { N } } ) : {
i  e.  dom  I  |  ( I `  i )  =  { N } } -1-1-onto-> ( I " {
i  e.  dom  I  |  ( I `  i )  =  { N } } ) )
8 ushgredgedgloop.f . . . . 5  |-  F  =  ( x  e.  A  |->  ( I `  x
) )
9 ushgredgedgloop.a . . . . . . 7  |-  A  =  { i  e.  dom  I  |  ( I `  i )  =  { N } }
109a1i 11 . . . . . 6  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  A  =  { i  e.  dom  I  |  ( I `  i )  =  { N } } )
11 eqidd 2623 . . . . . 6  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  x  e.  A )  ->  (
I `  x )  =  ( I `  x ) )
1210, 11mpteq12dva 4732 . . . . 5  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
x  e.  A  |->  ( I `  x ) )  =  ( x  e.  { i  e. 
dom  I  |  ( I `  i )  =  { N } }  |->  ( I `  x ) ) )
138, 12syl5eq 2668 . . . 4  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  F  =  ( x  e. 
{ i  e.  dom  I  |  ( I `  i )  =  { N } }  |->  ( I `
 x ) ) )
14 f1f 6101 . . . . . . 7  |-  ( I : dom  I -1-1-> ( ~P (Vtx `  G
)  \  { (/) } )  ->  I : dom  I
--> ( ~P (Vtx `  G )  \  { (/)
} ) )
153, 14syl 17 . . . . . 6  |-  ( G  e. USHGraph  ->  I : dom  I
--> ( ~P (Vtx `  G )  \  { (/)
} ) )
165a1i 11 . . . . . 6  |-  ( G  e. USHGraph  ->  { i  e. 
dom  I  |  ( I `  i )  =  { N } }  C_  dom  I )
1715, 16feqresmpt 6250 . . . . 5  |-  ( G  e. USHGraph  ->  ( I  |`  { i  e.  dom  I  |  ( I `  i )  =  { N } } )  =  ( x  e.  {
i  e.  dom  I  |  ( I `  i )  =  { N } }  |->  ( I `
 x ) ) )
1817adantr 481 . . . 4  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
I  |`  { i  e. 
dom  I  |  ( I `  i )  =  { N } } )  =  ( x  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  |->  ( I `
 x ) ) )
1913, 18eqtr4d 2659 . . 3  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  F  =  ( I  |`  { i  e.  dom  I  |  ( I `  i )  =  { N } } ) )
20 ushgruhgr 25964 . . . . . . . 8  |-  ( G  e. USHGraph  ->  G  e. UHGraph  )
21 eqid 2622 . . . . . . . . 9  |-  (iEdg `  G )  =  (iEdg `  G )
2221uhgrfun 25961 . . . . . . . 8  |-  ( G  e. UHGraph  ->  Fun  (iEdg `  G
) )
2320, 22syl 17 . . . . . . 7  |-  ( G  e. USHGraph  ->  Fun  (iEdg `  G
) )
242funeqi 5909 . . . . . . 7  |-  ( Fun  I  <->  Fun  (iEdg `  G
) )
2523, 24sylibr 224 . . . . . 6  |-  ( G  e. USHGraph  ->  Fun  I )
2625adantr 481 . . . . 5  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  Fun  I )
27 dfimafn 6245 . . . . 5  |-  ( ( Fun  I  /\  {
i  e.  dom  I  |  ( I `  i )  =  { N } }  C_  dom  I )  ->  (
I " { i  e.  dom  I  |  ( I `  i
)  =  { N } } )  =  {
e  |  E. j  e.  { i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  e } )
2826, 5, 27sylancl 694 . . . 4  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
I " { i  e.  dom  I  |  ( I `  i
)  =  { N } } )  =  {
e  |  E. j  e.  { i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  e } )
29 fveq2 6191 . . . . . . . . . . 11  |-  ( i  =  j  ->  (
I `  i )  =  ( I `  j ) )
3029eqeq1d 2624 . . . . . . . . . 10  |-  ( i  =  j  ->  (
( I `  i
)  =  { N } 
<->  ( I `  j
)  =  { N } ) )
3130elrab 3363 . . . . . . . . 9  |-  ( j  e.  { i  e. 
dom  I  |  ( I `  i )  =  { N } } 
<->  ( j  e.  dom  I  /\  ( I `  j )  =  { N } ) )
32 simpl 473 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  dom  I  /\  ( I `  j
)  =  { N } )  ->  j  e.  dom  I )
33 fvelrn 6352 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  I  /\  j  e.  dom  I )  -> 
( I `  j
)  e.  ran  I
)
342eqcomi 2631 . . . . . . . . . . . . . . . . 17  |-  (iEdg `  G )  =  I
3534rneqi 5352 . . . . . . . . . . . . . . . 16  |-  ran  (iEdg `  G )  =  ran  I
3633, 35syl6eleqr 2712 . . . . . . . . . . . . . . 15  |-  ( ( Fun  I  /\  j  e.  dom  I )  -> 
( I `  j
)  e.  ran  (iEdg `  G ) )
3726, 32, 36syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } ) )  -> 
( I `  j
)  e.  ran  (iEdg `  G ) )
38373adant3 1081 . . . . . . . . . . . . 13  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } )  /\  (
I `  j )  =  f )  -> 
( I `  j
)  e.  ran  (iEdg `  G ) )
39 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( f  =  ( I `  j )  ->  (
f  e.  ran  (iEdg `  G )  <->  ( I `  j )  e.  ran  (iEdg `  G ) ) )
4039eqcoms 2630 . . . . . . . . . . . . . 14  |-  ( ( I `  j )  =  f  ->  (
f  e.  ran  (iEdg `  G )  <->  ( I `  j )  e.  ran  (iEdg `  G ) ) )
41403ad2ant3 1084 . . . . . . . . . . . . 13  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } )  /\  (
I `  j )  =  f )  -> 
( f  e.  ran  (iEdg `  G )  <->  ( I `  j )  e.  ran  (iEdg `  G ) ) )
4238, 41mpbird 247 . . . . . . . . . . . 12  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } )  /\  (
I `  j )  =  f )  -> 
f  e.  ran  (iEdg `  G ) )
43 ushgredgedgloop.e . . . . . . . . . . . . . . . 16  |-  E  =  (Edg `  G )
44 edgval 25941 . . . . . . . . . . . . . . . . 17  |-  (Edg `  G )  =  ran  (iEdg `  G )
4544a1i 11 . . . . . . . . . . . . . . . 16  |-  ( G  e. USHGraph  ->  (Edg `  G
)  =  ran  (iEdg `  G ) )
4643, 45syl5eq 2668 . . . . . . . . . . . . . . 15  |-  ( G  e. USHGraph  ->  E  =  ran  (iEdg `  G ) )
4746eleq2d 2687 . . . . . . . . . . . . . 14  |-  ( G  e. USHGraph  ->  ( f  e.  E  <->  f  e.  ran  (iEdg `  G ) ) )
4847adantr 481 . . . . . . . . . . . . 13  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
f  e.  E  <->  f  e.  ran  (iEdg `  G )
) )
49483ad2ant1 1082 . . . . . . . . . . . 12  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } )  /\  (
I `  j )  =  f )  -> 
( f  e.  E  <->  f  e.  ran  (iEdg `  G ) ) )
5042, 49mpbird 247 . . . . . . . . . . 11  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } )  /\  (
I `  j )  =  f )  -> 
f  e.  E )
51 eqeq1 2626 . . . . . . . . . . . . . . 15  |-  ( ( I `  j )  =  f  ->  (
( I `  j
)  =  { N } 
<->  f  =  { N } ) )
5251biimpcd 239 . . . . . . . . . . . . . 14  |-  ( ( I `  j )  =  { N }  ->  ( ( I `  j )  =  f  ->  f  =  { N } ) )
5352adantl 482 . . . . . . . . . . . . 13  |-  ( ( j  e.  dom  I  /\  ( I `  j
)  =  { N } )  ->  (
( I `  j
)  =  f  -> 
f  =  { N } ) )
5453a1i 11 . . . . . . . . . . . 12  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
( j  e.  dom  I  /\  ( I `  j )  =  { N } )  ->  (
( I `  j
)  =  f  -> 
f  =  { N } ) ) )
55543imp 1256 . . . . . . . . . . 11  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } )  /\  (
I `  j )  =  f )  -> 
f  =  { N } )
5650, 55jca 554 . . . . . . . . . 10  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } )  /\  (
I `  j )  =  f )  -> 
( f  e.  E  /\  f  =  { N } ) )
57563exp 1264 . . . . . . . . 9  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
( j  e.  dom  I  /\  ( I `  j )  =  { N } )  ->  (
( I `  j
)  =  f  -> 
( f  e.  E  /\  f  =  { N } ) ) ) )
5831, 57syl5bi 232 . . . . . . . 8  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
j  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  ->  ( ( I `  j )  =  f  ->  (
f  e.  E  /\  f  =  { N } ) ) ) )
5958rexlimdv 3030 . . . . . . 7  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  ( E. j  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  ( I `  j )  =  f  ->  ( f  e.  E  /\  f  =  { N } ) ) )
60 funfn 5918 . . . . . . . . . . . . . 14  |-  ( Fun  (iEdg `  G )  <->  (iEdg `  G )  Fn  dom  (iEdg `  G ) )
6160biimpi 206 . . . . . . . . . . . . 13  |-  ( Fun  (iEdg `  G )  ->  (iEdg `  G )  Fn  dom  (iEdg `  G
) )
6223, 61syl 17 . . . . . . . . . . . 12  |-  ( G  e. USHGraph  ->  (iEdg `  G
)  Fn  dom  (iEdg `  G ) )
63 fvelrnb 6243 . . . . . . . . . . . 12  |-  ( (iEdg `  G )  Fn  dom  (iEdg `  G )  -> 
( f  e.  ran  (iEdg `  G )  <->  E. j  e.  dom  (iEdg `  G
) ( (iEdg `  G ) `  j
)  =  f ) )
6462, 63syl 17 . . . . . . . . . . 11  |-  ( G  e. USHGraph  ->  ( f  e. 
ran  (iEdg `  G )  <->  E. j  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  j
)  =  f ) )
6534dmeqi 5325 . . . . . . . . . . . . . . . . . . . . . 22  |-  dom  (iEdg `  G )  =  dom  I
6665eleq2i 2693 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  dom  (iEdg `  G )  <->  j  e.  dom  I )
6766biimpi 206 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  dom  (iEdg `  G )  ->  j  e.  dom  I )
6867adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  dom  (iEdg `  G )  /\  (
(iEdg `  G ) `  j )  =  f )  ->  j  e.  dom  I )
6968adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e. USHGraph  /\  f  =  { N } )  /\  ( j  e. 
dom  (iEdg `  G )  /\  ( (iEdg `  G
) `  j )  =  f ) )  ->  j  e.  dom  I )
7034fveq1i 6192 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (iEdg `  G ) `  j
)  =  ( I `
 j )
7170eqeq2i 2634 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  =  ( (iEdg `  G ) `  j
)  <->  f  =  ( I `  j ) )
7271biimpi 206 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  =  ( (iEdg `  G ) `  j
)  ->  f  =  ( I `  j
) )
7372eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (iEdg `  G ) `  j )  =  f  ->  f  =  ( I `  j ) )
7473eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (iEdg `  G ) `  j )  =  f  ->  ( f  =  { N }  <->  ( I `  j )  =  { N } ) )
7574biimpcd 239 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  { N }  ->  ( ( (iEdg `  G ) `  j
)  =  f  -> 
( I `  j
)  =  { N } ) )
7675adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e. USHGraph  /\  f  =  { N } )  ->  ( ( (iEdg `  G ) `  j
)  =  f  -> 
( I `  j
)  =  { N } ) )
7776adantld 483 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e. USHGraph  /\  f  =  { N } )  ->  ( ( j  e.  dom  (iEdg `  G )  /\  (
(iEdg `  G ) `  j )  =  f )  ->  ( I `  j )  =  { N } ) )
7877imp 445 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e. USHGraph  /\  f  =  { N } )  /\  ( j  e. 
dom  (iEdg `  G )  /\  ( (iEdg `  G
) `  j )  =  f ) )  ->  ( I `  j )  =  { N } )
7969, 78jca 554 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e. USHGraph  /\  f  =  { N } )  /\  ( j  e. 
dom  (iEdg `  G )  /\  ( (iEdg `  G
) `  j )  =  f ) )  ->  ( j  e. 
dom  I  /\  (
I `  j )  =  { N } ) )
8079, 31sylibr 224 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e. USHGraph  /\  f  =  { N } )  /\  ( j  e. 
dom  (iEdg `  G )  /\  ( (iEdg `  G
) `  j )  =  f ) )  ->  j  e.  {
i  e.  dom  I  |  ( I `  i )  =  { N } } )
8170eqeq1i 2627 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (iEdg `  G ) `  j )  =  f  <-> 
( I `  j
)  =  f )
8281biimpi 206 . . . . . . . . . . . . . . . . . 18  |-  ( ( (iEdg `  G ) `  j )  =  f  ->  ( I `  j )  =  f )
8382adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  dom  (iEdg `  G )  /\  (
(iEdg `  G ) `  j )  =  f )  ->  ( I `  j )  =  f )
8483adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e. USHGraph  /\  f  =  { N } )  /\  ( j  e. 
dom  (iEdg `  G )  /\  ( (iEdg `  G
) `  j )  =  f ) )  ->  ( I `  j )  =  f )
8580, 84jca 554 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. USHGraph  /\  f  =  { N } )  /\  ( j  e. 
dom  (iEdg `  G )  /\  ( (iEdg `  G
) `  j )  =  f ) )  ->  ( j  e. 
{ i  e.  dom  I  |  ( I `  i )  =  { N } }  /\  (
I `  j )  =  f ) )
8685ex 450 . . . . . . . . . . . . . 14  |-  ( ( G  e. USHGraph  /\  f  =  { N } )  ->  ( ( j  e.  dom  (iEdg `  G )  /\  (
(iEdg `  G ) `  j )  =  f )  ->  ( j  e.  { i  e.  dom  I  |  ( I `  i )  =  { N } }  /\  (
I `  j )  =  f ) ) )
8786reximdv2 3014 . . . . . . . . . . . . 13  |-  ( ( G  e. USHGraph  /\  f  =  { N } )  ->  ( E. j  e.  dom  (iEdg `  G
) ( (iEdg `  G ) `  j
)  =  f  ->  E. j  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  ( I `  j )  =  f ) )
8887ex 450 . . . . . . . . . . . 12  |-  ( G  e. USHGraph  ->  ( f  =  { N }  ->  ( E. j  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  j )  =  f  ->  E. j  e.  {
i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  f ) ) )
8988com23 86 . . . . . . . . . . 11  |-  ( G  e. USHGraph  ->  ( E. j  e.  dom  (iEdg `  G
) ( (iEdg `  G ) `  j
)  =  f  -> 
( f  =  { N }  ->  E. j  e.  { i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  f ) ) )
9064, 89sylbid 230 . . . . . . . . . 10  |-  ( G  e. USHGraph  ->  ( f  e. 
ran  (iEdg `  G )  ->  ( f  =  { N }  ->  E. j  e.  { i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  f ) ) )
9147, 90sylbid 230 . . . . . . . . 9  |-  ( G  e. USHGraph  ->  ( f  e.  E  ->  ( f  =  { N }  ->  E. j  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  ( I `  j )  =  f ) ) )
9291impd 447 . . . . . . . 8  |-  ( G  e. USHGraph  ->  ( ( f  e.  E  /\  f  =  { N } )  ->  E. j  e.  {
i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  f ) )
9392adantr 481 . . . . . . 7  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
( f  e.  E  /\  f  =  { N } )  ->  E. j  e.  { i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  f ) )
9459, 93impbid 202 . . . . . 6  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  ( E. j  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  ( I `  j )  =  f  <-> 
( f  e.  E  /\  f  =  { N } ) ) )
95 vex 3203 . . . . . . 7  |-  f  e. 
_V
96 eqeq2 2633 . . . . . . . 8  |-  ( e  =  f  ->  (
( I `  j
)  =  e  <->  ( I `  j )  =  f ) )
9796rexbidv 3052 . . . . . . 7  |-  ( e  =  f  ->  ( E. j  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  ( I `  j )  =  e  <->  E. j  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  ( I `  j )  =  f ) )
9895, 97elab 3350 . . . . . 6  |-  ( f  e.  { e  |  E. j  e.  {
i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  e }  <->  E. j  e.  { i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  f )
99 eqeq1 2626 . . . . . . 7  |-  ( e  =  f  ->  (
e  =  { N } 
<->  f  =  { N } ) )
100 ushgredgedgloop.b . . . . . . 7  |-  B  =  { e  e.  E  |  e  =  { N } }
10199, 100elrab2 3366 . . . . . 6  |-  ( f  e.  B  <->  ( f  e.  E  /\  f  =  { N } ) )
10294, 98, 1013bitr4g 303 . . . . 5  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
f  e.  { e  |  E. j  e. 
{ i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  e }  <->  f  e.  B ) )
103102eqrdv 2620 . . . 4  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  { e  |  E. j  e. 
{ i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  e }  =  B )
10428, 103eqtr2d 2657 . . 3  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  B  =  ( I " { i  e.  dom  I  |  ( I `  i )  =  { N } } ) )
10519, 10, 104f1oeq123d 6133 . 2  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  ( F : A -1-1-onto-> B  <->  ( I  |`  { i  e.  dom  I  |  ( I `  i )  =  { N } } ) : { i  e.  dom  I  |  ( I `  i )  =  { N } } -1-1-onto-> ( I " {
i  e.  dom  I  |  ( I `  i )  =  { N } } ) ) )
1067, 105mpbird 247 1  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  F : A -1-1-onto-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   {crab 2916    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   USHGraph cushgr 25952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-edg 25940  df-uhgr 25953  df-ushgr 25954
This theorem is referenced by:  vtxdushgrfvedg  26386
  Copyright terms: Public domain W3C validator