MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isusp Structured version   Visualization version   Unicode version

Theorem isusp 22065
Description: The predicate  W is a uniform space. (Contributed by Thierry Arnoux, 4-Dec-2017.)
Hypotheses
Ref Expression
isusp.1  |-  B  =  ( Base `  W
)
isusp.2  |-  U  =  (UnifSt `  W )
isusp.3  |-  J  =  ( TopOpen `  W )
Assertion
Ref Expression
isusp  |-  ( W  e. UnifSp 
<->  ( U  e.  (UnifOn `  B )  /\  J  =  (unifTop `  U )
) )

Proof of Theorem isusp
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( W  e. UnifSp  ->  W  e.  _V )
2 0nep0 4836 . . . . 5  |-  (/)  =/=  { (/)
}
3 isusp.1 . . . . . . . . . . . 12  |-  B  =  ( Base `  W
)
4 fvprc 6185 . . . . . . . . . . . 12  |-  ( -.  W  e.  _V  ->  (
Base `  W )  =  (/) )
53, 4syl5eq 2668 . . . . . . . . . . 11  |-  ( -.  W  e.  _V  ->  B  =  (/) )
65fveq2d 6195 . . . . . . . . . 10  |-  ( -.  W  e.  _V  ->  (UnifOn `  B )  =  (UnifOn `  (/) ) )
7 ust0 22023 . . . . . . . . . 10  |-  (UnifOn `  (/) )  =  { { (/)
} }
86, 7syl6eq 2672 . . . . . . . . 9  |-  ( -.  W  e.  _V  ->  (UnifOn `  B )  =  { { (/) } } )
98eleq2d 2687 . . . . . . . 8  |-  ( -.  W  e.  _V  ->  ( U  e.  (UnifOn `  B )  <->  U  e.  { { (/) } } ) )
10 isusp.2 . . . . . . . . . 10  |-  U  =  (UnifSt `  W )
11 fvex 6201 . . . . . . . . . 10  |-  (UnifSt `  W )  e.  _V
1210, 11eqeltri 2697 . . . . . . . . 9  |-  U  e. 
_V
1312elsn 4192 . . . . . . . 8  |-  ( U  e.  { { (/) } }  <->  U  =  { (/)
} )
149, 13syl6bb 276 . . . . . . 7  |-  ( -.  W  e.  _V  ->  ( U  e.  (UnifOn `  B )  <->  U  =  { (/) } ) )
15 fvprc 6185 . . . . . . . . 9  |-  ( -.  W  e.  _V  ->  (UnifSt `  W )  =  (/) )
1610, 15syl5eq 2668 . . . . . . . 8  |-  ( -.  W  e.  _V  ->  U  =  (/) )
1716eqeq1d 2624 . . . . . . 7  |-  ( -.  W  e.  _V  ->  ( U  =  { (/) }  <->  (/)  =  { (/) } ) )
1814, 17bitrd 268 . . . . . 6  |-  ( -.  W  e.  _V  ->  ( U  e.  (UnifOn `  B )  <->  (/)  =  { (/)
} ) )
1918necon3bbid 2831 . . . . 5  |-  ( -.  W  e.  _V  ->  ( -.  U  e.  (UnifOn `  B )  <->  (/)  =/=  { (/)
} ) )
202, 19mpbiri 248 . . . 4  |-  ( -.  W  e.  _V  ->  -.  U  e.  (UnifOn `  B ) )
2120con4i 113 . . 3  |-  ( U  e.  (UnifOn `  B
)  ->  W  e.  _V )
2221adantr 481 . 2  |-  ( ( U  e.  (UnifOn `  B )  /\  J  =  (unifTop `  U )
)  ->  W  e.  _V )
23 fveq2 6191 . . . . . 6  |-  ( w  =  W  ->  (UnifSt `  w )  =  (UnifSt `  W ) )
2423, 10syl6eqr 2674 . . . . 5  |-  ( w  =  W  ->  (UnifSt `  w )  =  U )
25 fveq2 6191 . . . . . . 7  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
2625, 3syl6eqr 2674 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  B )
2726fveq2d 6195 . . . . 5  |-  ( w  =  W  ->  (UnifOn `  ( Base `  w
) )  =  (UnifOn `  B ) )
2824, 27eleq12d 2695 . . . 4  |-  ( w  =  W  ->  (
(UnifSt `  w )  e.  (UnifOn `  ( Base `  w ) )  <->  U  e.  (UnifOn `  B ) ) )
29 fveq2 6191 . . . . . 6  |-  ( w  =  W  ->  ( TopOpen
`  w )  =  ( TopOpen `  W )
)
30 isusp.3 . . . . . 6  |-  J  =  ( TopOpen `  W )
3129, 30syl6eqr 2674 . . . . 5  |-  ( w  =  W  ->  ( TopOpen
`  w )  =  J )
3224fveq2d 6195 . . . . 5  |-  ( w  =  W  ->  (unifTop `  (UnifSt `  w )
)  =  (unifTop `  U
) )
3331, 32eqeq12d 2637 . . . 4  |-  ( w  =  W  ->  (
( TopOpen `  w )  =  (unifTop `  (UnifSt `  w
) )  <->  J  =  (unifTop `  U ) ) )
3428, 33anbi12d 747 . . 3  |-  ( w  =  W  ->  (
( (UnifSt `  w
)  e.  (UnifOn `  ( Base `  w )
)  /\  ( TopOpen `  w )  =  (unifTop `  (UnifSt `  w )
) )  <->  ( U  e.  (UnifOn `  B )  /\  J  =  (unifTop `  U ) ) ) )
35 df-usp 22061 . . 3  |- UnifSp  =  {
w  |  ( (UnifSt `  w )  e.  (UnifOn `  ( Base `  w
) )  /\  ( TopOpen
`  w )  =  (unifTop `  (UnifSt `  w
) ) ) }
3634, 35elab2g 3353 . 2  |-  ( W  e.  _V  ->  ( W  e. UnifSp  <->  ( U  e.  (UnifOn `  B )  /\  J  =  (unifTop `  U ) ) ) )
371, 22, 36pm5.21nii 368 1  |-  ( W  e. UnifSp 
<->  ( U  e.  (UnifOn `  B )  /\  J  =  (unifTop `  U )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   {csn 4177   ` cfv 5888   Basecbs 15857   TopOpenctopn 16082  UnifOncust 22003  unifTopcutop 22034  UnifStcuss 22057  UnifSpcusp 22058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ust 22004  df-usp 22061
This theorem is referenced by:  ressust  22068  ressusp  22069  tususp  22076  uspreg  22078  ucncn  22089  neipcfilu  22100  ucnextcn  22108  xmsusp  22374
  Copyright terms: Public domain W3C validator