Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzinico Structured version   Visualization version   Unicode version

Theorem uzinico 39787
Description: An upper interval of integers is the intersection of the integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
uzinico.1  |-  ( ph  ->  M  e.  ZZ )
uzinico.2  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
uzinico  |-  ( ph  ->  Z  =  ( ZZ 
i^i  ( M [,) +oo ) ) )

Proof of Theorem uzinico
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 uzinico.2 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
21eluzelz2 39627 . . . . . . 7  |-  ( k  e.  Z  ->  k  e.  ZZ )
32adantl 482 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  ZZ )
4 uzinico.1 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
54zred 11482 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
65rexrd 10089 . . . . . . . 8  |-  ( ph  ->  M  e.  RR* )
76adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  M  e.  RR* )
8 pnfxr 10092 . . . . . . . 8  |- +oo  e.  RR*
98a1i 11 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  -> +oo  e.  RR* )
10 zssre 11384 . . . . . . . . . 10  |-  ZZ  C_  RR
11 ressxr 10083 . . . . . . . . . 10  |-  RR  C_  RR*
1210, 11sstri 3612 . . . . . . . . 9  |-  ZZ  C_  RR*
1312, 2sseldi 3601 . . . . . . . 8  |-  ( k  e.  Z  ->  k  e.  RR* )
1413adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  RR* )
151eleq2i 2693 . . . . . . . . . 10  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
1615biimpi 206 . . . . . . . . 9  |-  ( k  e.  Z  ->  k  e.  ( ZZ>= `  M )
)
17 eluzle 11700 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  <_  k )
1816, 17syl 17 . . . . . . . 8  |-  ( k  e.  Z  ->  M  <_  k )
1918adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  M  <_  k )
2010, 2sseldi 3601 . . . . . . . . 9  |-  ( k  e.  Z  ->  k  e.  RR )
2120ltpnfd 11955 . . . . . . . 8  |-  ( k  e.  Z  ->  k  < +oo )
2221adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  k  < +oo )
237, 9, 14, 19, 22elicod 12224 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  ( M [,) +oo ) )
243, 23elind 3798 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  ( ZZ  i^i  ( M [,) +oo ) ) )
2524ex 450 . . . 4  |-  ( ph  ->  ( k  e.  Z  ->  k  e.  ( ZZ 
i^i  ( M [,) +oo ) ) ) )
264adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ  i^i  ( M [,) +oo ) ) )  ->  M  e.  ZZ )
27 elinel1 3799 . . . . . . 7  |-  ( k  e.  ( ZZ  i^i  ( M [,) +oo )
)  ->  k  e.  ZZ )
2827adantl 482 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ  i^i  ( M [,) +oo ) ) )  ->  k  e.  ZZ )
29 elinel2 3800 . . . . . . . 8  |-  ( k  e.  ( ZZ  i^i  ( M [,) +oo )
)  ->  k  e.  ( M [,) +oo )
)
3029adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ  i^i  ( M [,) +oo ) ) )  ->  k  e.  ( M [,) +oo )
)
316adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M [,) +oo )
)  ->  M  e.  RR* )
328a1i 11 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M [,) +oo )
)  -> +oo  e.  RR* )
33 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M [,) +oo )
)  ->  k  e.  ( M [,) +oo )
)
3431, 32, 33icogelbd 39785 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M [,) +oo )
)  ->  M  <_  k )
3530, 34syldan 487 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ  i^i  ( M [,) +oo ) ) )  ->  M  <_  k )
361, 26, 28, 35eluzd 39635 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ  i^i  ( M [,) +oo ) ) )  ->  k  e.  Z )
3736ex 450 . . . 4  |-  ( ph  ->  ( k  e.  ( ZZ  i^i  ( M [,) +oo ) )  ->  k  e.  Z
) )
3825, 37impbid 202 . . 3  |-  ( ph  ->  ( k  e.  Z  <->  k  e.  ( ZZ  i^i  ( M [,) +oo )
) ) )
3938alrimiv 1855 . 2  |-  ( ph  ->  A. k ( k  e.  Z  <->  k  e.  ( ZZ  i^i  ( M [,) +oo ) ) ) )
40 dfcleq 2616 . 2  |-  ( Z  =  ( ZZ  i^i  ( M [,) +oo )
)  <->  A. k ( k  e.  Z  <->  k  e.  ( ZZ  i^i  ( M [,) +oo ) ) ) )
4139, 40sylibr 224 1  |-  ( ph  ->  Z  =  ( ZZ 
i^i  ( M [,) +oo ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990    i^i cin 3573   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687   [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pnf 10076  df-xr 10078  df-ltxr 10079  df-neg 10269  df-z 11378  df-uz 11688  df-ico 12181
This theorem is referenced by:  uzinico2  39789  limsupresuz  39935  liminfresuz  40016
  Copyright terms: Public domain W3C validator