MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcidOLD Structured version   Visualization version   Unicode version

Theorem vcidOLD 27419
Description: Identity element for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) Obsolete as of 21-Sep-2021. Use clmvs1 22893 together with cvsclm 22926 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
vciOLD.1  |-  G  =  ( 1st `  W
)
vciOLD.2  |-  S  =  ( 2nd `  W
)
vciOLD.3  |-  X  =  ran  G
Assertion
Ref Expression
vcidOLD  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  ( 1 S A )  =  A )

Proof of Theorem vcidOLD
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vciOLD.1 . . . 4  |-  G  =  ( 1st `  W
)
2 vciOLD.2 . . . 4  |-  S  =  ( 2nd `  W
)
3 vciOLD.3 . . . 4  |-  X  =  ran  G
41, 2, 3vciOLD 27416 . . 3  |-  ( W  e.  CVecOLD  ->  ( G  e.  AbelOp  /\  S : ( CC  X.  X ) --> X  /\  A. x  e.  X  ( ( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) )
5 simpl 473 . . . . 5  |-  ( ( ( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )  ->  (
1 S x )  =  x )
65ralimi 2952 . . . 4  |-  ( A. x  e.  X  (
( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )  ->  A. x  e.  X  ( 1 S x )  =  x )
763ad2ant3 1084 . . 3  |-  ( ( G  e.  AbelOp  /\  S : ( CC  X.  X ) --> X  /\  A. x  e.  X  ( ( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) )  ->  A. x  e.  X  ( 1 S x )  =  x )
84, 7syl 17 . 2  |-  ( W  e.  CVecOLD  ->  A. x  e.  X  ( 1 S x )  =  x )
9 oveq2 6658 . . . 4  |-  ( x  =  A  ->  (
1 S x )  =  ( 1 S A ) )
10 id 22 . . . 4  |-  ( x  =  A  ->  x  =  A )
119, 10eqeq12d 2637 . . 3  |-  ( x  =  A  ->  (
( 1 S x )  =  x  <->  ( 1 S A )  =  A ) )
1211rspccva 3308 . 2  |-  ( ( A. x  e.  X  ( 1 S x )  =  x  /\  A  e.  X )  ->  ( 1 S A )  =  A )
138, 12sylan 488 1  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  ( 1 S A )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941   AbelOpcablo 27398   CVecOLDcvc 27413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-1st 7168  df-2nd 7169  df-vc 27414
This theorem is referenced by:  vc2OLD  27423  vc0  27429  vcm  27431  nvsid  27482
  Copyright terms: Public domain W3C validator