MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vc0 Structured version   Visualization version   Unicode version

Theorem vc0 27429
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vc0.1  |-  G  =  ( 1st `  W
)
vc0.2  |-  S  =  ( 2nd `  W
)
vc0.3  |-  X  =  ran  G
vc0.4  |-  Z  =  (GId `  G )
Assertion
Ref Expression
vc0  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  ( 0 S A )  =  Z )

Proof of Theorem vc0
StepHypRef Expression
1 vc0.1 . . . 4  |-  G  =  ( 1st `  W
)
2 vc0.3 . . . 4  |-  X  =  ran  G
3 vc0.4 . . . 4  |-  Z  =  (GId `  G )
41, 2, 3vc0rid 27428 . . 3  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  ( A G Z )  =  A )
5 1p0e1 11133 . . . . 5  |-  ( 1  +  0 )  =  1
65oveq1i 6660 . . . 4  |-  ( ( 1  +  0 ) S A )  =  ( 1 S A )
7 0cn 10032 . . . . 5  |-  0  e.  CC
8 ax-1cn 9994 . . . . . 6  |-  1  e.  CC
9 vc0.2 . . . . . . 7  |-  S  =  ( 2nd `  W
)
101, 9, 2vcdir 27421 . . . . . 6  |-  ( ( W  e.  CVecOLD  /\  ( 1  e.  CC  /\  0  e.  CC  /\  A  e.  X )
)  ->  ( (
1  +  0 ) S A )  =  ( ( 1 S A ) G ( 0 S A ) ) )
118, 10mp3anr1 1421 . . . . 5  |-  ( ( W  e.  CVecOLD  /\  ( 0  e.  CC  /\  A  e.  X ) )  ->  ( (
1  +  0 ) S A )  =  ( ( 1 S A ) G ( 0 S A ) ) )
127, 11mpanr1 719 . . . 4  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  ( ( 1  +  0 ) S A )  =  ( ( 1 S A ) G ( 0 S A ) ) )
131, 9, 2vcidOLD 27419 . . . 4  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  ( 1 S A )  =  A )
146, 12, 133eqtr3a 2680 . . 3  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  ( ( 1 S A ) G ( 0 S A ) )  =  A )
1513oveq1d 6665 . . 3  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  ( ( 1 S A ) G ( 0 S A ) )  =  ( A G ( 0 S A ) ) )
164, 14, 153eqtr2rd 2663 . 2  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  ( A G ( 0 S A ) )  =  ( A G Z ) )
171, 9, 2vccl 27418 . . . . 5  |-  ( ( W  e.  CVecOLD  /\  0  e.  CC  /\  A  e.  X )  ->  ( 0 S A )  e.  X )
187, 17mp3an2 1412 . . . 4  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  ( 0 S A )  e.  X
)
191, 2, 3vczcl 27427 . . . . 5  |-  ( W  e.  CVecOLD  ->  Z  e.  X )
2019adantr 481 . . . 4  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  Z  e.  X
)
21 simpr 477 . . . 4  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  A  e.  X
)
2218, 20, 213jca 1242 . . 3  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  ( ( 0 S A )  e.  X  /\  Z  e.  X  /\  A  e.  X ) )
231, 2vclcan 27426 . . 3  |-  ( ( W  e.  CVecOLD  /\  ( ( 0 S A )  e.  X  /\  Z  e.  X  /\  A  e.  X
) )  ->  (
( A G ( 0 S A ) )  =  ( A G Z )  <->  ( 0 S A )  =  Z ) )
2422, 23syldan 487 . 2  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  ( ( A G ( 0 S A ) )  =  ( A G Z )  <->  ( 0 S A )  =  Z ) )
2516, 24mpbid 222 1  |-  ( ( W  e.  CVecOLD  /\  A  e.  X )  ->  ( 0 S A )  =  Z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939  GIdcgi 27344   CVecOLDcvc 27413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414
This theorem is referenced by:  vcz  27430  vcm  27431  nv0  27492
  Copyright terms: Public domain W3C validator