| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vciOLD | Structured version Visualization version Unicode version | ||
| Description: Obsolete version of cvsi 22930
as of 21-Sep-2021. The properties of a
complex vector space, which is an Abelian group (i.e. the vectors, with
the operation of vector addition) accompanied by a scalar multiplication
operation on the field of complex numbers. The variable |
| Ref | Expression |
|---|---|
| vciOLD.1 |
|
| vciOLD.2 |
|
| vciOLD.3 |
|
| Ref | Expression |
|---|---|
| vciOLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vciOLD.1 |
. . . . 5
| |
| 2 | 1 | eqeq2i 2634 |
. . . 4
|
| 3 | eleq1 2689 |
. . . . 5
| |
| 4 | rneq 5351 |
. . . . . . 7
| |
| 5 | vciOLD.3 |
. . . . . . 7
| |
| 6 | 4, 5 | syl6eqr 2674 |
. . . . . 6
|
| 7 | xpeq2 5129 |
. . . . . . . 8
| |
| 8 | 7 | feq2d 6031 |
. . . . . . 7
|
| 9 | feq3 6028 |
. . . . . . 7
| |
| 10 | 8, 9 | bitrd 268 |
. . . . . 6
|
| 11 | 6, 10 | syl 17 |
. . . . 5
|
| 12 | oveq 6656 |
. . . . . . . . . . . 12
| |
| 13 | 12 | oveq2d 6666 |
. . . . . . . . . . 11
|
| 14 | oveq 6656 |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | eqeq12d 2637 |
. . . . . . . . . 10
|
| 16 | 6, 15 | raleqbidv 3152 |
. . . . . . . . 9
|
| 17 | oveq 6656 |
. . . . . . . . . . . 12
| |
| 18 | 17 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 19 | 18 | anbi1d 741 |
. . . . . . . . . 10
|
| 20 | 19 | ralbidv 2986 |
. . . . . . . . 9
|
| 21 | 16, 20 | anbi12d 747 |
. . . . . . . 8
|
| 22 | 21 | ralbidv 2986 |
. . . . . . 7
|
| 23 | 22 | anbi2d 740 |
. . . . . 6
|
| 24 | 6, 23 | raleqbidv 3152 |
. . . . 5
|
| 25 | 3, 11, 24 | 3anbi123d 1399 |
. . . 4
|
| 26 | 2, 25 | sylbir 225 |
. . 3
|
| 27 | vciOLD.2 |
. . . . 5
| |
| 28 | 27 | eqeq2i 2634 |
. . . 4
|
| 29 | feq1 6026 |
. . . . 5
| |
| 30 | oveq 6656 |
. . . . . . . 8
| |
| 31 | 30 | eqeq1d 2624 |
. . . . . . 7
|
| 32 | oveq 6656 |
. . . . . . . . . . 11
| |
| 33 | oveq 6656 |
. . . . . . . . . . . 12
| |
| 34 | oveq 6656 |
. . . . . . . . . . . 12
| |
| 35 | 33, 34 | oveq12d 6668 |
. . . . . . . . . . 11
|
| 36 | 32, 35 | eqeq12d 2637 |
. . . . . . . . . 10
|
| 37 | 36 | ralbidv 2986 |
. . . . . . . . 9
|
| 38 | oveq 6656 |
. . . . . . . . . . . 12
| |
| 39 | oveq 6656 |
. . . . . . . . . . . . 13
| |
| 40 | 33, 39 | oveq12d 6668 |
. . . . . . . . . . . 12
|
| 41 | 38, 40 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 42 | oveq 6656 |
. . . . . . . . . . . 12
| |
| 43 | 39 | oveq2d 6666 |
. . . . . . . . . . . . 13
|
| 44 | oveq 6656 |
. . . . . . . . . . . . 13
| |
| 45 | 43, 44 | eqtrd 2656 |
. . . . . . . . . . . 12
|
| 46 | 42, 45 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 47 | 41, 46 | anbi12d 747 |
. . . . . . . . . 10
|
| 48 | 47 | ralbidv 2986 |
. . . . . . . . 9
|
| 49 | 37, 48 | anbi12d 747 |
. . . . . . . 8
|
| 50 | 49 | ralbidv 2986 |
. . . . . . 7
|
| 51 | 31, 50 | anbi12d 747 |
. . . . . 6
|
| 52 | 51 | ralbidv 2986 |
. . . . 5
|
| 53 | 29, 52 | 3anbi23d 1402 |
. . . 4
|
| 54 | 28, 53 | sylbir 225 |
. . 3
|
| 55 | 26, 54 | elopabi 7231 |
. 2
|
| 56 | df-vc 27414 |
. 2
| |
| 57 | 55, 56 | eleq2s 2719 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-1st 7168 df-2nd 7169 df-vc 27414 |
| This theorem is referenced by: vcsm 27417 vcidOLD 27419 vcdi 27420 vcdir 27421 vcass 27422 vcablo 27424 |
| Copyright terms: Public domain | W3C validator |