MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vsfval Structured version   Visualization version   Unicode version

Theorem vsfval 27488
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
vsfval.2  |-  G  =  ( +v `  U
)
vsfval.3  |-  M  =  ( -v `  U
)
Assertion
Ref Expression
vsfval  |-  M  =  (  /g  `  G
)

Proof of Theorem vsfval
Dummy variables  x  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-vs 27454 . . . . 5  |-  -v  =  (  /g  o.  +v )
21fveq1i 6192 . . . 4  |-  ( -v
`  U )  =  ( (  /g  o.  +v ) `  U )
3 fo1st 7188 . . . . . . . 8  |-  1st : _V -onto-> _V
4 fof 6115 . . . . . . . 8  |-  ( 1st
: _V -onto-> _V  ->  1st
: _V --> _V )
53, 4ax-mp 5 . . . . . . 7  |-  1st : _V
--> _V
6 fco 6058 . . . . . . 7  |-  ( ( 1st : _V --> _V  /\  1st : _V --> _V )  ->  ( 1st  o.  1st ) : _V --> _V )
75, 5, 6mp2an 708 . . . . . 6  |-  ( 1st 
o.  1st ) : _V --> _V
8 df-va 27450 . . . . . . 7  |-  +v  =  ( 1st  o.  1st )
98feq1i 6036 . . . . . 6  |-  ( +v : _V --> _V  <->  ( 1st  o. 
1st ) : _V --> _V )
107, 9mpbir 221 . . . . 5  |-  +v : _V
--> _V
11 fvco3 6275 . . . . 5  |-  ( ( +v : _V --> _V  /\  U  e.  _V )  ->  ( (  /g  o.  +v ) `  U )  =  (  /g  `  ( +v `  U ) ) )
1210, 11mpan 706 . . . 4  |-  ( U  e.  _V  ->  (
(  /g  o.  +v ) `  U )  =  (  /g  `  ( +v `  U ) ) )
132, 12syl5eq 2668 . . 3  |-  ( U  e.  _V  ->  ( -v `  U )  =  (  /g  `  ( +v `  U ) ) )
14 0ngrp 27365 . . . . . 6  |-  -.  (/)  e.  GrpOp
15 vex 3203 . . . . . . . . . 10  |-  g  e. 
_V
1615rnex 7100 . . . . . . . . 9  |-  ran  g  e.  _V
1716, 16mpt2ex 7247 . . . . . . . 8  |-  ( x  e.  ran  g ,  y  e.  ran  g  |->  ( x g ( ( inv `  g
) `  y )
) )  e.  _V
18 df-gdiv 27350 . . . . . . . 8  |-  /g  =  ( g  e.  GrpOp  |->  ( x  e.  ran  g ,  y  e.  ran  g  |->  ( x g ( ( inv `  g ) `  y
) ) ) )
1917, 18dmmpti 6023 . . . . . . 7  |-  dom  /g  =  GrpOp
2019eleq2i 2693 . . . . . 6  |-  ( (/)  e.  dom  /g  <->  (/)  e.  GrpOp )
2114, 20mtbir 313 . . . . 5  |-  -.  (/)  e.  dom  /g
22 ndmfv 6218 . . . . 5  |-  ( -.  (/)  e.  dom  /g  ->  (  /g  `  (/) )  =  (/) )
2321, 22mp1i 13 . . . 4  |-  ( -.  U  e.  _V  ->  (  /g  `  (/) )  =  (/) )
24 fvprc 6185 . . . . 5  |-  ( -.  U  e.  _V  ->  ( +v `  U )  =  (/) )
2524fveq2d 6195 . . . 4  |-  ( -.  U  e.  _V  ->  (  /g  `  ( +v
`  U ) )  =  (  /g  `  (/) ) )
26 fvprc 6185 . . . 4  |-  ( -.  U  e.  _V  ->  ( -v `  U )  =  (/) )
2723, 25, 263eqtr4rd 2667 . . 3  |-  ( -.  U  e.  _V  ->  ( -v `  U )  =  (  /g  `  ( +v `  U ) ) )
2813, 27pm2.61i 176 . 2  |-  ( -v
`  U )  =  (  /g  `  ( +v `  U ) )
29 vsfval.3 . 2  |-  M  =  ( -v `  U
)
30 vsfval.2 . . 3  |-  G  =  ( +v `  U
)
3130fveq2i 6194 . 2  |-  (  /g  `  G )  =  (  /g  `  ( +v
`  U ) )
3228, 29, 313eqtr4i 2654 1  |-  M  =  (  /g  `  G
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   dom cdm 5114   ran crn 5115    o. ccom 5118   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   GrpOpcgr 27343   invcgn 27345    /g cgs 27346   +vcpv 27440   -vcnsb 27444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gdiv 27350  df-va 27450  df-vs 27454
This theorem is referenced by:  nvm  27496  nvmfval  27499  nvnnncan1  27502  nvaddsub  27510
  Copyright terms: Public domain W3C validator