MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wkslem2 Structured version   Visualization version   Unicode version

Theorem wkslem2 26504
Description: Lemma 2 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.)
Assertion
Ref Expression
wkslem2  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  (if- ( ( P `  A )  =  ( P `  ( A  +  1
) ) ,  ( I `  ( F `
 A ) )  =  { ( P `
 A ) } ,  { ( P `
 A ) ,  ( P `  ( A  +  1 ) ) }  C_  (
I `  ( F `  A ) ) )  <-> if- ( ( P `  B )  =  ( P `  C ) ,  ( I `  ( F `  B ) )  =  { ( P `  B ) } ,  { ( P `  B ) ,  ( P `  C ) }  C_  ( I `  ( F `  B )
) ) ) )

Proof of Theorem wkslem2
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( A  =  B  ->  ( P `  A )  =  ( P `  B ) )
21adantr 481 . . 3  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  ( P `  A )  =  ( P `  B ) )
3 fveq2 6191 . . . 4  |-  ( ( A  +  1 )  =  C  ->  ( P `  ( A  +  1 ) )  =  ( P `  C ) )
43adantl 482 . . 3  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  ( P `  ( A  +  1
) )  =  ( P `  C ) )
52, 4eqeq12d 2637 . 2  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  ( ( P `
 A )  =  ( P `  ( A  +  1 ) )  <->  ( P `  B )  =  ( P `  C ) ) )
6 fveq2 6191 . . . . 5  |-  ( A  =  B  ->  ( F `  A )  =  ( F `  B ) )
76fveq2d 6195 . . . 4  |-  ( A  =  B  ->  (
I `  ( F `  A ) )  =  ( I `  ( F `  B )
) )
81sneqd 4189 . . . 4  |-  ( A  =  B  ->  { ( P `  A ) }  =  { ( P `  B ) } )
97, 8eqeq12d 2637 . . 3  |-  ( A  =  B  ->  (
( I `  ( F `  A )
)  =  { ( P `  A ) }  <->  ( I `  ( F `  B ) )  =  { ( P `  B ) } ) )
109adantr 481 . 2  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  ( ( I `
 ( F `  A ) )  =  { ( P `  A ) }  <->  ( I `  ( F `  B
) )  =  {
( P `  B
) } ) )
112, 4preq12d 4276 . . 3  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  { ( P `
 A ) ,  ( P `  ( A  +  1 ) ) }  =  {
( P `  B
) ,  ( P `
 C ) } )
127adantr 481 . . 3  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  ( I `  ( F `  A ) )  =  ( I `
 ( F `  B ) ) )
1311, 12sseq12d 3634 . 2  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  ( { ( P `  A ) ,  ( P `  ( A  +  1
) ) }  C_  ( I `  ( F `  A )
)  <->  { ( P `  B ) ,  ( P `  C ) }  C_  ( I `  ( F `  B
) ) ) )
145, 10, 13ifpbi123d 1027 1  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  (if- ( ( P `  A )  =  ( P `  ( A  +  1
) ) ,  ( I `  ( F `
 A ) )  =  { ( P `
 A ) } ,  { ( P `
 A ) ,  ( P `  ( A  +  1 ) ) }  C_  (
I `  ( F `  A ) ) )  <-> if- ( ( P `  B )  =  ( P `  C ) ,  ( I `  ( F `  B ) )  =  { ( P `  B ) } ,  { ( P `  B ) ,  ( P `  C ) }  C_  ( I `  ( F `  B )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384  if-wif 1012    = wceq 1483    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by:  wlkl1loop  26534  wlk1walk  26535  crctcshwlkn0lem6  26707  1wlkdlem4  27000
  Copyright terms: Public domain W3C validator