MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wkslem1 Structured version   Visualization version   Unicode version

Theorem wkslem1 26503
Description: Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.)
Assertion
Ref Expression
wkslem1  |-  ( A  =  B  ->  (if- ( ( P `  A )  =  ( P `  ( A  +  1 ) ) ,  ( I `  ( F `  A ) )  =  { ( P `  A ) } ,  { ( P `  A ) ,  ( P `  ( A  +  1
) ) }  C_  ( I `  ( F `  A )
) )  <-> if- ( ( P `  B )  =  ( P `  ( B  +  1
) ) ,  ( I `  ( F `
 B ) )  =  { ( P `
 B ) } ,  { ( P `
 B ) ,  ( P `  ( B  +  1 ) ) }  C_  (
I `  ( F `  B ) ) ) ) )

Proof of Theorem wkslem1
StepHypRef Expression
1 fveq2 6191 . . 3  |-  ( A  =  B  ->  ( P `  A )  =  ( P `  B ) )
2 oveq1 6657 . . . 4  |-  ( A  =  B  ->  ( A  +  1 )  =  ( B  + 
1 ) )
32fveq2d 6195 . . 3  |-  ( A  =  B  ->  ( P `  ( A  +  1 ) )  =  ( P `  ( B  +  1
) ) )
41, 3eqeq12d 2637 . 2  |-  ( A  =  B  ->  (
( P `  A
)  =  ( P `
 ( A  + 
1 ) )  <->  ( P `  B )  =  ( P `  ( B  +  1 ) ) ) )
5 fveq2 6191 . . . 4  |-  ( A  =  B  ->  ( F `  A )  =  ( F `  B ) )
65fveq2d 6195 . . 3  |-  ( A  =  B  ->  (
I `  ( F `  A ) )  =  ( I `  ( F `  B )
) )
71sneqd 4189 . . 3  |-  ( A  =  B  ->  { ( P `  A ) }  =  { ( P `  B ) } )
86, 7eqeq12d 2637 . 2  |-  ( A  =  B  ->  (
( I `  ( F `  A )
)  =  { ( P `  A ) }  <->  ( I `  ( F `  B ) )  =  { ( P `  B ) } ) )
91, 3preq12d 4276 . . 3  |-  ( A  =  B  ->  { ( P `  A ) ,  ( P `  ( A  +  1
) ) }  =  { ( P `  B ) ,  ( P `  ( B  +  1 ) ) } )
109, 6sseq12d 3634 . 2  |-  ( A  =  B  ->  ( { ( P `  A ) ,  ( P `  ( A  +  1 ) ) }  C_  ( I `  ( F `  A
) )  <->  { ( P `  B ) ,  ( P `  ( B  +  1
) ) }  C_  ( I `  ( F `  B )
) ) )
114, 8, 10ifpbi123d 1027 1  |-  ( A  =  B  ->  (if- ( ( P `  A )  =  ( P `  ( A  +  1 ) ) ,  ( I `  ( F `  A ) )  =  { ( P `  A ) } ,  { ( P `  A ) ,  ( P `  ( A  +  1
) ) }  C_  ( I `  ( F `  A )
) )  <-> if- ( ( P `  B )  =  ( P `  ( B  +  1
) ) ,  ( I `  ( F `
 B ) )  =  { ( P `
 B ) } ,  { ( P `
 B ) ,  ( P `  ( B  +  1 ) ) }  C_  (
I `  ( F `  B ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196  if-wif 1012    = wceq 1483    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  wlk1walk  26535  wlkres  26567  crctcshwlkn0lem6  26707  crctcshwlkn0lem7  26708  crctcshwlkn0  26713
  Copyright terms: Public domain W3C validator