MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsnon Structured version   Visualization version   Unicode version

Theorem wspthsnon 26739
Description: The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
Hypothesis
Ref Expression
wwlksnon.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
wspthsnon  |-  ( ( N  e.  NN0  /\  G  e.  U )  ->  ( N WSPathsNOn  G )  =  ( a  e.  V ,  b  e.  V  |->  { w  e.  ( a ( N WWalksNOn  G ) b )  |  E. f  f ( a (SPathsOn `  G
) b ) w } ) )
Distinct variable groups:    G, a,
b, w    N, a,
b, w    V, a,
b    f, G, a, b, w    f, N
Allowed substitution hints:    U( w, f, a, b)    V( w, f)

Proof of Theorem wspthsnon
Dummy variables  g  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wspthsnon 26726 . . 3  |- WSPathsNOn  =  ( n  e.  NN0 , 
g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g
)  |->  { w  e.  ( a ( n WWalksNOn  g ) b )  |  E. f  f ( a (SPathsOn `  g
) b ) w } ) )
21a1i 11 . 2  |-  ( ( N  e.  NN0  /\  G  e.  U )  -> WSPathsNOn  =  ( n  e. 
NN0 ,  g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g )  |->  { w  e.  ( a ( n WWalksNOn  g ) b )  |  E. f  f ( a (SPathsOn `  g
) b ) w } ) ) )
3 fveq2 6191 . . . . . 6  |-  ( g  =  G  ->  (Vtx `  g )  =  (Vtx
`  G ) )
4 wwlksnon.v . . . . . 6  |-  V  =  (Vtx `  G )
53, 4syl6eqr 2674 . . . . 5  |-  ( g  =  G  ->  (Vtx `  g )  =  V )
65adantl 482 . . . 4  |-  ( ( n  =  N  /\  g  =  G )  ->  (Vtx `  g )  =  V )
7 oveq12 6659 . . . . . 6  |-  ( ( n  =  N  /\  g  =  G )  ->  ( n WWalksNOn  g )  =  ( N WWalksNOn  G ) )
87oveqd 6667 . . . . 5  |-  ( ( n  =  N  /\  g  =  G )  ->  ( a ( n WWalksNOn  g ) b )  =  ( a ( N WWalksNOn  G ) b ) )
9 fveq2 6191 . . . . . . . . 9  |-  ( g  =  G  ->  (SPathsOn `  g )  =  (SPathsOn `  G ) )
109oveqd 6667 . . . . . . . 8  |-  ( g  =  G  ->  (
a (SPathsOn `  g )
b )  =  ( a (SPathsOn `  G
) b ) )
1110breqd 4664 . . . . . . 7  |-  ( g  =  G  ->  (
f ( a (SPathsOn `  g ) b ) w  <->  f ( a (SPathsOn `  G )
b ) w ) )
1211adantl 482 . . . . . 6  |-  ( ( n  =  N  /\  g  =  G )  ->  ( f ( a (SPathsOn `  g )
b ) w  <->  f (
a (SPathsOn `  G )
b ) w ) )
1312exbidv 1850 . . . . 5  |-  ( ( n  =  N  /\  g  =  G )  ->  ( E. f  f ( a (SPathsOn `  g
) b ) w  <->  E. f  f (
a (SPathsOn `  G )
b ) w ) )
148, 13rabeqbidv 3195 . . . 4  |-  ( ( n  =  N  /\  g  =  G )  ->  { w  e.  ( a ( n WWalksNOn  g
) b )  |  E. f  f ( a (SPathsOn `  g
) b ) w }  =  { w  e.  ( a ( N WWalksNOn  G ) b )  |  E. f  f ( a (SPathsOn `  G
) b ) w } )
156, 6, 14mpt2eq123dv 6717 . . 3  |-  ( ( n  =  N  /\  g  =  G )  ->  ( a  e.  (Vtx
`  g ) ,  b  e.  (Vtx `  g )  |->  { w  e.  ( a ( n WWalksNOn  g ) b )  |  E. f  f ( a (SPathsOn `  g
) b ) w } )  =  ( a  e.  V , 
b  e.  V  |->  { w  e.  ( a ( N WWalksNOn  G )
b )  |  E. f  f ( a (SPathsOn `  G )
b ) w }
) )
1615adantl 482 . 2  |-  ( ( ( N  e.  NN0  /\  G  e.  U )  /\  ( n  =  N  /\  g  =  G ) )  -> 
( a  e.  (Vtx
`  g ) ,  b  e.  (Vtx `  g )  |->  { w  e.  ( a ( n WWalksNOn  g ) b )  |  E. f  f ( a (SPathsOn `  g
) b ) w } )  =  ( a  e.  V , 
b  e.  V  |->  { w  e.  ( a ( N WWalksNOn  G )
b )  |  E. f  f ( a (SPathsOn `  G )
b ) w }
) )
17 simpl 473 . 2  |-  ( ( N  e.  NN0  /\  G  e.  U )  ->  N  e.  NN0 )
18 elex 3212 . . 3  |-  ( G  e.  U  ->  G  e.  _V )
1918adantl 482 . 2  |-  ( ( N  e.  NN0  /\  G  e.  U )  ->  G  e.  _V )
20 fvex 6201 . . . . 5  |-  (Vtx `  G )  e.  _V
214, 20eqeltri 2697 . . . 4  |-  V  e. 
_V
2221, 21mpt2ex 7247 . . 3  |-  ( a  e.  V ,  b  e.  V  |->  { w  e.  ( a ( N WWalksNOn  G ) b )  |  E. f  f ( a (SPathsOn `  G
) b ) w } )  e.  _V
2322a1i 11 . 2  |-  ( ( N  e.  NN0  /\  G  e.  U )  ->  ( a  e.  V ,  b  e.  V  |->  { w  e.  ( a ( N WWalksNOn  G ) b )  |  E. f  f ( a (SPathsOn `  G )
b ) w }
)  e.  _V )
242, 16, 17, 19, 23ovmpt2d 6788 1  |-  ( ( N  e.  NN0  /\  G  e.  U )  ->  ( N WSPathsNOn  G )  =  ( a  e.  V ,  b  e.  V  |->  { w  e.  ( a ( N WWalksNOn  G ) b )  |  E. f  f ( a (SPathsOn `  G
) b ) w } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {crab 2916   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   NN0cn0 11292  Vtxcvtx 25874  SPathsOncspthson 26611   WWalksNOn cwwlksnon 26719   WSPathsNOn cwwspthsnon 26721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wspthsnon 26726
This theorem is referenced by:  iswspthsnon  26741
  Copyright terms: Public domain W3C validator