MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpeq0 Structured version   Visualization version   Unicode version

Theorem xpeq0 5554
Description: At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
xpeq0  |-  ( ( A  X.  B )  =  (/)  <->  ( A  =  (/)  \/  B  =  (/) ) )

Proof of Theorem xpeq0
StepHypRef Expression
1 xpnz 5553 . . 3  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  <->  ( A  X.  B )  =/=  (/) )
21necon2bbii 2845 . 2  |-  ( ( A  X.  B )  =  (/)  <->  -.  ( A  =/=  (/)  /\  B  =/=  (/) ) )
3 ianor 509 . 2  |-  ( -.  ( A  =/=  (/)  /\  B  =/=  (/) )  <->  ( -.  A  =/=  (/)  \/  -.  B  =/=  (/) ) )
4 nne 2798 . . 3  |-  ( -.  A  =/=  (/)  <->  A  =  (/) )
5 nne 2798 . . 3  |-  ( -.  B  =/=  (/)  <->  B  =  (/) )
64, 5orbi12i 543 . 2  |-  ( ( -.  A  =/=  (/)  \/  -.  B  =/=  (/) )  <->  ( A  =  (/)  \/  B  =  (/) ) )
72, 3, 63bitri 286 1  |-  ( ( A  X.  B )  =  (/)  <->  ( A  =  (/)  \/  B  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    =/= wne 2794   (/)c0 3915    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122
This theorem is referenced by:  xpcan  5570  xpcan2  5571  frxp  7287  rankxplim3  8744  xpcbas  16818  metn0  22165  filnetlem4  32376
  Copyright terms: Public domain W3C validator