| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpiundir | Structured version Visualization version Unicode version | ||
| Description: Distributive law for Cartesian product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.) |
| Ref | Expression |
|---|---|
| xpiundir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 3225 |
. . . . 5
| |
| 2 | df-rex 2918 |
. . . . . 6
| |
| 3 | 2 | rexbii 3041 |
. . . . 5
|
| 4 | eliun 4524 |
. . . . . . . 8
| |
| 5 | 4 | anbi1i 731 |
. . . . . . 7
|
| 6 | r19.41v 3089 |
. . . . . . 7
| |
| 7 | 5, 6 | bitr4i 267 |
. . . . . 6
|
| 8 | 7 | exbii 1774 |
. . . . 5
|
| 9 | 1, 3, 8 | 3bitr4ri 293 |
. . . 4
|
| 10 | df-rex 2918 |
. . . 4
| |
| 11 | elxp2 5132 |
. . . . 5
| |
| 12 | 11 | rexbii 3041 |
. . . 4
|
| 13 | 9, 10, 12 | 3bitr4i 292 |
. . 3
|
| 14 | elxp2 5132 |
. . 3
| |
| 15 | eliun 4524 |
. . 3
| |
| 16 | 13, 14, 15 | 3bitr4i 292 |
. 2
|
| 17 | 16 | eqriv 2619 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-iun 4522 df-opab 4713 df-xp 5120 |
| This theorem is referenced by: iunxpconst 5175 resiun2 5418 txbasval 21409 txtube 21443 txcmplem1 21444 ovoliunlem1 23270 |
| Copyright terms: Public domain | W3C validator |