MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpiundir Structured version   Visualization version   Unicode version

Theorem xpiundir 5174
Description: Distributive law for Cartesian product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
xpiundir  |-  ( U_ x  e.  A  B  X.  C )  =  U_ x  e.  A  ( B  X.  C )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem xpiundir
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3225 . . . . 5  |-  ( E. x  e.  A  E. y ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  E. y E. x  e.  A  ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
2 df-rex 2918 . . . . . 6  |-  ( E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >.  <->  E. y ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
32rexbii 3041 . . . . 5  |-  ( E. x  e.  A  E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >.  <->  E. x  e.  A  E. y ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
4 eliun 4524 . . . . . . . 8  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
54anbi1i 731 . . . . . . 7  |-  ( ( y  e.  U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  ( E. x  e.  A  y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. )
)
6 r19.41v 3089 . . . . . . 7  |-  ( E. x  e.  A  ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  ( E. x  e.  A  y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. )
)
75, 6bitr4i 267 . . . . . 6  |-  ( ( y  e.  U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  E. x  e.  A  ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
87exbii 1774 . . . . 5  |-  ( E. y ( y  e. 
U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  E. y E. x  e.  A  ( y  e.  B  /\  E. w  e.  C  z  =  <. y ,  w >. ) )
91, 3, 83bitr4ri 293 . . . 4  |-  ( E. y ( y  e. 
U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )  <->  E. x  e.  A  E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >. )
10 df-rex 2918 . . . 4  |-  ( E. y  e.  U_  x  e.  A  B E. w  e.  C  z  =  <. y ,  w >.  <->  E. y ( y  e. 
U_ x  e.  A  B  /\  E. w  e.  C  z  =  <. y ,  w >. )
)
11 elxp2 5132 . . . . 5  |-  ( z  e.  ( B  X.  C )  <->  E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >. )
1211rexbii 3041 . . . 4  |-  ( E. x  e.  A  z  e.  ( B  X.  C )  <->  E. x  e.  A  E. y  e.  B  E. w  e.  C  z  =  <. y ,  w >. )
139, 10, 123bitr4i 292 . . 3  |-  ( E. y  e.  U_  x  e.  A  B E. w  e.  C  z  =  <. y ,  w >.  <->  E. x  e.  A  z  e.  ( B  X.  C ) )
14 elxp2 5132 . . 3  |-  ( z  e.  ( U_ x  e.  A  B  X.  C )  <->  E. y  e.  U_  x  e.  A  B E. w  e.  C  z  =  <. y ,  w >. )
15 eliun 4524 . . 3  |-  ( z  e.  U_ x  e.  A  ( B  X.  C )  <->  E. x  e.  A  z  e.  ( B  X.  C
) )
1613, 14, 153bitr4i 292 . 2  |-  ( z  e.  ( U_ x  e.  A  B  X.  C )  <->  z  e.  U_ x  e.  A  ( B  X.  C ) )
1716eqriv 2619 1  |-  ( U_ x  e.  A  B  X.  C )  =  U_ x  e.  A  ( B  X.  C )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   <.cop 4183   U_ciun 4520    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-opab 4713  df-xp 5120
This theorem is referenced by:  iunxpconst  5175  resiun2  5418  txbasval  21409  txtube  21443  txcmplem1  21444  ovoliunlem1  23270
  Copyright terms: Public domain W3C validator