Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lt2addrd Structured version   Visualization version   Unicode version

Theorem lt2addrd 29516
Description: If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.)
Hypotheses
Ref Expression
lt2addrd.1  |-  ( ph  ->  A  e.  RR )
lt2addrd.2  |-  ( ph  ->  B  e.  RR )
lt2addrd.3  |-  ( ph  ->  C  e.  RR )
lt2addrd.4  |-  ( ph  ->  A  <  ( B  +  C ) )
Assertion
Ref Expression
lt2addrd  |-  ( ph  ->  E. b  e.  RR  E. c  e.  RR  ( A  =  ( b  +  c )  /\  b  <  B  /\  c  <  C ) )
Distinct variable groups:    b, c, A    B, b, c    C, b, c
Allowed substitution hints:    ph( b, c)

Proof of Theorem lt2addrd
StepHypRef Expression
1 lt2addrd.2 . . 3  |-  ( ph  ->  B  e.  RR )
2 lt2addrd.3 . . . . . 6  |-  ( ph  ->  C  e.  RR )
31, 2readdcld 10069 . . . . 5  |-  ( ph  ->  ( B  +  C
)  e.  RR )
4 lt2addrd.1 . . . . 5  |-  ( ph  ->  A  e.  RR )
53, 4resubcld 10458 . . . 4  |-  ( ph  ->  ( ( B  +  C )  -  A
)  e.  RR )
65rehalfcld 11279 . . 3  |-  ( ph  ->  ( ( ( B  +  C )  -  A )  /  2
)  e.  RR )
71, 6resubcld 10458 . 2  |-  ( ph  ->  ( B  -  (
( ( B  +  C )  -  A
)  /  2 ) )  e.  RR )
82, 6resubcld 10458 . 2  |-  ( ph  ->  ( C  -  (
( ( B  +  C )  -  A
)  /  2 ) )  e.  RR )
92recnd 10068 . . . . . 6  |-  ( ph  ->  C  e.  CC )
101recnd 10068 . . . . . . . . 9  |-  ( ph  ->  B  e.  CC )
1110, 9addcld 10059 . . . . . . . 8  |-  ( ph  ->  ( B  +  C
)  e.  CC )
124recnd 10068 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
1311, 12subcld 10392 . . . . . . 7  |-  ( ph  ->  ( ( B  +  C )  -  A
)  e.  CC )
1413halfcld 11277 . . . . . 6  |-  ( ph  ->  ( ( ( B  +  C )  -  A )  /  2
)  e.  CC )
159, 14, 14subsub4d 10423 . . . . 5  |-  ( ph  ->  ( ( C  -  ( ( ( B  +  C )  -  A )  /  2
) )  -  (
( ( B  +  C )  -  A
)  /  2 ) )  =  ( C  -  ( ( ( ( B  +  C
)  -  A )  /  2 )  +  ( ( ( B  +  C )  -  A )  /  2
) ) ) )
1615oveq2d 6666 . . . 4  |-  ( ph  ->  ( B  +  ( ( C  -  (
( ( B  +  C )  -  A
)  /  2 ) )  -  ( ( ( B  +  C
)  -  A )  /  2 ) ) )  =  ( B  +  ( C  -  ( ( ( ( B  +  C )  -  A )  / 
2 )  +  ( ( ( B  +  C )  -  A
)  /  2 ) ) ) ) )
179, 14subcld 10392 . . . . 5  |-  ( ph  ->  ( C  -  (
( ( B  +  C )  -  A
)  /  2 ) )  e.  CC )
1810, 14, 17subadd23d 10414 . . . 4  |-  ( ph  ->  ( ( B  -  ( ( ( B  +  C )  -  A )  /  2
) )  +  ( C  -  ( ( ( B  +  C
)  -  A )  /  2 ) ) )  =  ( B  +  ( ( C  -  ( ( ( B  +  C )  -  A )  / 
2 ) )  -  ( ( ( B  +  C )  -  A )  /  2
) ) ) )
19132halvesd 11278 . . . . . 6  |-  ( ph  ->  ( ( ( ( B  +  C )  -  A )  / 
2 )  +  ( ( ( B  +  C )  -  A
)  /  2 ) )  =  ( ( B  +  C )  -  A ) )
2019, 13eqeltrd 2701 . . . . 5  |-  ( ph  ->  ( ( ( ( B  +  C )  -  A )  / 
2 )  +  ( ( ( B  +  C )  -  A
)  /  2 ) )  e.  CC )
2110, 9, 20addsubassd 10412 . . . 4  |-  ( ph  ->  ( ( B  +  C )  -  (
( ( ( B  +  C )  -  A )  /  2
)  +  ( ( ( B  +  C
)  -  A )  /  2 ) ) )  =  ( B  +  ( C  -  ( ( ( ( B  +  C )  -  A )  / 
2 )  +  ( ( ( B  +  C )  -  A
)  /  2 ) ) ) ) )
2216, 18, 213eqtr4d 2666 . . 3  |-  ( ph  ->  ( ( B  -  ( ( ( B  +  C )  -  A )  /  2
) )  +  ( C  -  ( ( ( B  +  C
)  -  A )  /  2 ) ) )  =  ( ( B  +  C )  -  ( ( ( ( B  +  C
)  -  A )  /  2 )  +  ( ( ( B  +  C )  -  A )  /  2
) ) ) )
2319oveq2d 6666 . . 3  |-  ( ph  ->  ( ( B  +  C )  -  (
( ( ( B  +  C )  -  A )  /  2
)  +  ( ( ( B  +  C
)  -  A )  /  2 ) ) )  =  ( ( B  +  C )  -  ( ( B  +  C )  -  A ) ) )
2411, 12nncand 10397 . . 3  |-  ( ph  ->  ( ( B  +  C )  -  (
( B  +  C
)  -  A ) )  =  A )
2522, 23, 243eqtrrd 2661 . 2  |-  ( ph  ->  A  =  ( ( B  -  ( ( ( B  +  C
)  -  A )  /  2 ) )  +  ( C  -  ( ( ( B  +  C )  -  A )  /  2
) ) ) )
26 lt2addrd.4 . . . . 5  |-  ( ph  ->  A  <  ( B  +  C ) )
27 difrp 11868 . . . . . 6  |-  ( ( A  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  ( A  < 
( B  +  C
)  <->  ( ( B  +  C )  -  A )  e.  RR+ ) )
284, 3, 27syl2anc 693 . . . . 5  |-  ( ph  ->  ( A  <  ( B  +  C )  <->  ( ( B  +  C
)  -  A )  e.  RR+ ) )
2926, 28mpbid 222 . . . 4  |-  ( ph  ->  ( ( B  +  C )  -  A
)  e.  RR+ )
3029rphalfcld 11884 . . 3  |-  ( ph  ->  ( ( ( B  +  C )  -  A )  /  2
)  e.  RR+ )
311, 30ltsubrpd 11904 . 2  |-  ( ph  ->  ( B  -  (
( ( B  +  C )  -  A
)  /  2 ) )  <  B )
322, 30ltsubrpd 11904 . 2  |-  ( ph  ->  ( C  -  (
( ( B  +  C )  -  A
)  /  2 ) )  <  C )
33 oveq1 6657 . . . . 5  |-  ( b  =  ( B  -  ( ( ( B  +  C )  -  A )  /  2
) )  ->  (
b  +  c )  =  ( ( B  -  ( ( ( B  +  C )  -  A )  / 
2 ) )  +  c ) )
3433eqeq2d 2632 . . . 4  |-  ( b  =  ( B  -  ( ( ( B  +  C )  -  A )  /  2
) )  ->  ( A  =  ( b  +  c )  <->  A  =  ( ( B  -  ( ( ( B  +  C )  -  A )  /  2
) )  +  c ) ) )
35 breq1 4656 . . . 4  |-  ( b  =  ( B  -  ( ( ( B  +  C )  -  A )  /  2
) )  ->  (
b  <  B  <->  ( B  -  ( ( ( B  +  C )  -  A )  / 
2 ) )  < 
B ) )
3634, 353anbi12d 1400 . . 3  |-  ( b  =  ( B  -  ( ( ( B  +  C )  -  A )  /  2
) )  ->  (
( A  =  ( b  +  c )  /\  b  <  B  /\  c  <  C )  <-> 
( A  =  ( ( B  -  (
( ( B  +  C )  -  A
)  /  2 ) )  +  c )  /\  ( B  -  ( ( ( B  +  C )  -  A )  /  2
) )  <  B  /\  c  <  C ) ) )
37 oveq2 6658 . . . . 5  |-  ( c  =  ( C  -  ( ( ( B  +  C )  -  A )  /  2
) )  ->  (
( B  -  (
( ( B  +  C )  -  A
)  /  2 ) )  +  c )  =  ( ( B  -  ( ( ( B  +  C )  -  A )  / 
2 ) )  +  ( C  -  (
( ( B  +  C )  -  A
)  /  2 ) ) ) )
3837eqeq2d 2632 . . . 4  |-  ( c  =  ( C  -  ( ( ( B  +  C )  -  A )  /  2
) )  ->  ( A  =  ( ( B  -  ( (
( B  +  C
)  -  A )  /  2 ) )  +  c )  <->  A  =  ( ( B  -  ( ( ( B  +  C )  -  A )  /  2
) )  +  ( C  -  ( ( ( B  +  C
)  -  A )  /  2 ) ) ) ) )
39 breq1 4656 . . . 4  |-  ( c  =  ( C  -  ( ( ( B  +  C )  -  A )  /  2
) )  ->  (
c  <  C  <->  ( C  -  ( ( ( B  +  C )  -  A )  / 
2 ) )  < 
C ) )
4038, 393anbi13d 1401 . . 3  |-  ( c  =  ( C  -  ( ( ( B  +  C )  -  A )  /  2
) )  ->  (
( A  =  ( ( B  -  (
( ( B  +  C )  -  A
)  /  2 ) )  +  c )  /\  ( B  -  ( ( ( B  +  C )  -  A )  /  2
) )  <  B  /\  c  <  C )  <-> 
( A  =  ( ( B  -  (
( ( B  +  C )  -  A
)  /  2 ) )  +  ( C  -  ( ( ( B  +  C )  -  A )  / 
2 ) ) )  /\  ( B  -  ( ( ( B  +  C )  -  A )  /  2
) )  <  B  /\  ( C  -  (
( ( B  +  C )  -  A
)  /  2 ) )  <  C ) ) )
4136, 40rspc2ev 3324 . 2  |-  ( ( ( B  -  (
( ( B  +  C )  -  A
)  /  2 ) )  e.  RR  /\  ( C  -  (
( ( B  +  C )  -  A
)  /  2 ) )  e.  RR  /\  ( A  =  (
( B  -  (
( ( B  +  C )  -  A
)  /  2 ) )  +  ( C  -  ( ( ( B  +  C )  -  A )  / 
2 ) ) )  /\  ( B  -  ( ( ( B  +  C )  -  A )  /  2
) )  <  B  /\  ( C  -  (
( ( B  +  C )  -  A
)  /  2 ) )  <  C ) )  ->  E. b  e.  RR  E. c  e.  RR  ( A  =  ( b  +  c )  /\  b  < 
B  /\  c  <  C ) )
427, 8, 25, 31, 32, 41syl113anc 1338 1  |-  ( ph  ->  E. b  e.  RR  E. c  e.  RR  ( A  =  ( b  +  c )  /\  b  <  B  /\  c  <  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935    + caddc 9939    < clt 10074    - cmin 10266    / cdiv 10684   2c2 11070   RR+crp 11832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833
This theorem is referenced by:  xlt2addrd  29523
  Copyright terms: Public domain W3C validator