MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfepfr Structured version   Visualization version   Unicode version

Theorem dfepfr 5099
Description: An alternate way of saying that the epsilon relation is well-founded. (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dfepfr  |-  (  _E  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  y
)  =  (/) ) )
Distinct variable group:    x, y, A

Proof of Theorem dfepfr
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dffr2 5079 . 2  |-  (  _E  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z  _E  y }  =  (/) ) )
2 epel 5032 . . . . . . . . 9  |-  ( z  _E  y  <->  z  e.  y )
32a1i 11 . . . . . . . 8  |-  ( z  e.  x  ->  (
z  _E  y  <->  z  e.  y ) )
43rabbiia 3185 . . . . . . 7  |-  { z  e.  x  |  z  _E  y }  =  { z  e.  x  |  z  e.  y }
5 dfin5 3582 . . . . . . 7  |-  ( x  i^i  y )  =  { z  e.  x  |  z  e.  y }
64, 5eqtr4i 2647 . . . . . 6  |-  { z  e.  x  |  z  _E  y }  =  ( x  i^i  y
)
76eqeq1i 2627 . . . . 5  |-  ( { z  e.  x  |  z  _E  y }  =  (/)  <->  ( x  i^i  y )  =  (/) )
87rexbii 3041 . . . 4  |-  ( E. y  e.  x  {
z  e.  x  |  z  _E  y }  =  (/)  <->  E. y  e.  x  ( x  i^i  y
)  =  (/) )
98imbi2i 326 . . 3  |-  ( ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z  _E  y }  =  (/) )  <->  ( (
x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  y )  =  (/) ) )
109albii 1747 . 2  |-  ( A. x ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z  _E  y }  =  (/) ) 
<-> 
A. x ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  y )  =  (/) ) )
111, 10bitri 264 1  |-  (  _E  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  y
)  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    =/= wne 2794   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    _E cep 5028    Fr wfr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-eprel 5029  df-fr 5073
This theorem is referenced by:  onfr  5763  zfregfr  8509  onfrALTlem3  38759  onfrALT  38764  onfrALTlem3VD  39123  onfrALTVD  39127
  Copyright terms: Public domain W3C validator