Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpset2N Structured version   Visualization version   GIF version

Theorem lshpset2N 34406
Description: The set of all hyperplanes of a left module or left vector space equals the set of all kernels of nonzero functionals. (Contributed by NM, 17-Jul-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpset2.v 𝑉 = (Base‘𝑊)
lshpset2.d 𝐷 = (Scalar‘𝑊)
lshpset2.z 0 = (0g𝐷)
lshpset2.h 𝐻 = (LSHyp‘𝑊)
lshpset2.f 𝐹 = (LFnl‘𝑊)
lshpset2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lshpset2N (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))})
Distinct variable groups:   𝑔,𝐹   𝑔,𝑠,𝐻   𝑔,𝐾   𝑔,𝑉   𝑔,𝑊,𝑠
Allowed substitution hints:   𝐷(𝑔,𝑠)   𝐹(𝑠)   𝐾(𝑠)   𝑉(𝑠)   0 (𝑔,𝑠)

Proof of Theorem lshpset2N
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpset2.h . . . . . 6 𝐻 = (LSHyp‘𝑊)
2 lshpset2.f . . . . . 6 𝐹 = (LFnl‘𝑊)
3 lshpset2.k . . . . . 6 𝐾 = (LKer‘𝑊)
41, 2, 3lshpkrex 34405 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑠)
5 eleq1 2689 . . . . . . . . . . . 12 ((𝐾𝑔) = 𝑠 → ((𝐾𝑔) ∈ 𝐻𝑠𝐻))
65biimparc 504 . . . . . . . . . . 11 ((𝑠𝐻 ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
76adantll 750 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
87adantlr 751 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
9 lshpset2.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
10 lshpset2.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
11 lshpset2.z . . . . . . . . . 10 0 = (0g𝐷)
12 simplll 798 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑊 ∈ LVec)
13 simplr 792 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑔𝐹)
149, 10, 11, 1, 2, 3, 12, 13lkrshp3 34393 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → ((𝐾𝑔) ∈ 𝐻𝑔 ≠ (𝑉 × { 0 })))
158, 14mpbid 222 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑔 ≠ (𝑉 × { 0 }))
1615ex 450 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠𝑔 ≠ (𝑉 × { 0 })))
17 eqimss2 3658 . . . . . . . . 9 ((𝐾𝑔) = 𝑠𝑠 ⊆ (𝐾𝑔))
18 eqimss 3657 . . . . . . . . 9 ((𝐾𝑔) = 𝑠 → (𝐾𝑔) ⊆ 𝑠)
1917, 18eqssd 3620 . . . . . . . 8 ((𝐾𝑔) = 𝑠𝑠 = (𝐾𝑔))
2019a1i 11 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠𝑠 = (𝐾𝑔)))
2116, 20jcad 555 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠 → (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
2221reximdva 3017 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → (∃𝑔𝐹 (𝐾𝑔) = 𝑠 → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
234, 22mpd 15 . . . 4 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)))
2423ex 450 . . 3 (𝑊 ∈ LVec → (𝑠𝐻 → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
259, 10, 11, 1, 2, 3lkrshp 34392 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑔𝐹𝑔 ≠ (𝑉 × { 0 })) → (𝐾𝑔) ∈ 𝐻)
26253adant3r 1323 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → (𝐾𝑔) ∈ 𝐻)
27 eqid 2622 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
28 eqid 2622 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
299, 27, 28, 1islshp 34266 . . . . . . . 8 (𝑊 ∈ LVec → ((𝐾𝑔) ∈ 𝐻 ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
30293ad2ant1 1082 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝐾𝑔) ∈ 𝐻 ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
3126, 30mpbid 222 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
32 eleq1 2689 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (𝑠 ∈ (LSubSp‘𝑊) ↔ (𝐾𝑔) ∈ (LSubSp‘𝑊)))
33 neeq1 2856 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (𝑠𝑉 ↔ (𝐾𝑔) ≠ 𝑉))
34 uneq1 3760 . . . . . . . . . . . 12 (𝑠 = (𝐾𝑔) → (𝑠 ∪ {𝑣}) = ((𝐾𝑔) ∪ {𝑣}))
3534fveq2d 6195 . . . . . . . . . . 11 (𝑠 = (𝐾𝑔) → ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})))
3635eqeq1d 2624 . . . . . . . . . 10 (𝑠 = (𝐾𝑔) → (((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
3736rexbidv 3052 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
3832, 33, 373anbi123d 1399 . . . . . . . 8 (𝑠 = (𝐾𝑔) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
3938adantl 482 . . . . . . 7 ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
40393ad2ant3 1084 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
4131, 40mpbird 247 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉))
4241rexlimdv3a 3033 . . . 4 (𝑊 ∈ LVec → (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉)))
439, 27, 28, 1islshp 34266 . . . 4 (𝑊 ∈ LVec → (𝑠𝐻 ↔ (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉)))
4442, 43sylibrd 249 . . 3 (𝑊 ∈ LVec → (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → 𝑠𝐻))
4524, 44impbid 202 . 2 (𝑊 ∈ LVec → (𝑠𝐻 ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
4645abbi2dv 2742 1 (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wrex 2913  cun 3572  {csn 4177   × cxp 5112  cfv 5888  Basecbs 15857  Scalarcsca 15944  0gc0g 16100  LSubSpclss 18932  LSpanclspn 18971  LVecclvec 19102  LSHypclsh 34262  LFnlclfn 34344  LKerclk 34372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lshyp 34264  df-lfl 34345  df-lkr 34373
This theorem is referenced by:  islshpkrN  34407
  Copyright terms: Public domain W3C validator