| Step | Hyp | Ref
| Expression |
| 1 | | nfiu1 4550 |
. . . . . . . . 9
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} |
| 2 | 1 | nfel1 2779 |
. . . . . . . 8
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card |
| 3 | | ssiun2 4563 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐵 ∣ 𝜑} ⊆ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 4 | | ssexg 4804 |
. . . . . . . . . 10
⊢ (({𝑦 ∈ 𝐵 ∣ 𝜑} ⊆ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card) → {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V) |
| 5 | 4 | expcom 451 |
. . . . . . . . 9
⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card → ({𝑦 ∈ 𝐵 ∣ 𝜑} ⊆ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} → {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V)) |
| 6 | 3, 5 | syl5 34 |
. . . . . . . 8
⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card → (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V)) |
| 7 | 2, 6 | ralrimi 2957 |
. . . . . . 7
⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V) |
| 8 | | dfiun2g 4552 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V → ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = ∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑}}) |
| 9 | 7, 8 | syl 17 |
. . . . . 6
⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card → ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = ∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑}}) |
| 10 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 11 | 10 | rnmpt 5371 |
. . . . . . 7
⊢ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑}} |
| 12 | 11 | unieqi 4445 |
. . . . . 6
⊢ ∪ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) = ∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑}} |
| 13 | 9, 12 | syl6eqr 2674 |
. . . . 5
⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card → ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = ∪ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 14 | | id 22 |
. . . . 5
⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card → ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card) |
| 15 | 13, 14 | eqeltrrd 2702 |
. . . 4
⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card → ∪ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ dom card) |
| 16 | 15 | 3ad2ant2 1083 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ dom card) |
| 17 | | simp3 1063 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
| 18 | | necom 2847 |
. . . . . . . 8
⊢ ({𝑦 ∈ 𝐵 ∣ 𝜑} ≠ ∅ ↔ ∅ ≠ {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 19 | | rabn0 3958 |
. . . . . . . 8
⊢ ({𝑦 ∈ 𝐵 ∣ 𝜑} ≠ ∅ ↔ ∃𝑦 ∈ 𝐵 𝜑) |
| 20 | | df-ne 2795 |
. . . . . . . 8
⊢ (∅
≠ {𝑦 ∈ 𝐵 ∣ 𝜑} ↔ ¬ ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 21 | 18, 19, 20 | 3bitr3i 290 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐵 𝜑 ↔ ¬ ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 22 | 21 | ralbii 2980 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 23 | | ralnex 2992 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ¬ ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑} ↔ ¬ ∃𝑥 ∈ 𝐴 ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 24 | 22, 23 | bitri 264 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 25 | 17, 24 | sylib 208 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ¬ ∃𝑥 ∈ 𝐴 ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 26 | | 0ex 4790 |
. . . . 5
⊢ ∅
∈ V |
| 27 | 10 | elrnmpt 5372 |
. . . . 5
⊢ (∅
∈ V → (∅ ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ↔ ∃𝑥 ∈ 𝐴 ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 28 | 26, 27 | ax-mp 5 |
. . . 4
⊢ (∅
∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ↔ ∃𝑥 ∈ 𝐴 ∅ = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 29 | 25, 28 | sylnibr 319 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ¬ ∅ ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 30 | | ac5num 8859 |
. . 3
⊢ ((∪ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ dom card ∧ ¬ ∅
∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})) → ∃𝑔(𝑔:ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})⟶∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧)) |
| 31 | 16, 29, 30 | syl2anc 693 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑔(𝑔:ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})⟶∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧)) |
| 32 | | ffn 6045 |
. . . . . 6
⊢ (𝑔:ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})⟶∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) → 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 33 | 32 | anim1i 592 |
. . . . 5
⊢ ((𝑔:ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})⟶∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧) → (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧)) |
| 34 | 7 | 3ad2ant2 1083 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V) |
| 35 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} → (𝑔‘𝑧) = (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 36 | | id 22 |
. . . . . . . . 9
⊢ (𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} → 𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 37 | 35, 36 | eleq12d 2695 |
. . . . . . . 8
⊢ (𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} → ((𝑔‘𝑧) ∈ 𝑧 ↔ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 38 | 10, 37 | ralrnmpt 6368 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ V → (∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧 ↔ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 39 | 34, 38 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → (∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧 ↔ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 40 | 39 | anbi2d 740 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ((𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧) ↔ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑}))) |
| 41 | 33, 40 | syl5ib 234 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ((𝑔:ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})⟶∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧) → (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑}))) |
| 42 | 3 | sseld 3602 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → ((𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑} → (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 43 | 42 | ralimia 2950 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑} → ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 44 | 43 | ad2antll 765 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 45 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑧(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} |
| 46 | | nfcsb1v 3549 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 47 | 46, 1 | nfel 2777 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} |
| 48 | | csbeq1a 3542 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) = ⦋𝑧 / 𝑥⦌(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 49 | 48 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ↔ ⦋𝑧 / 𝑥⦌(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 50 | 45, 47, 49 | cbvral 3167 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑧 ∈ 𝐴 ⦋𝑧 / 𝑥⦌(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 51 | 44, 50 | sylib 208 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → ∀𝑧 ∈ 𝐴 ⦋𝑧 / 𝑥⦌(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 52 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑧(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 53 | 52, 46, 48 | cbvmpt 4749 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) = (𝑧 ∈ 𝐴 ↦ ⦋𝑧 / 𝑥⦌(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 54 | 53 | fmpt 6381 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝐴 ⦋𝑧 / 𝑥⦌(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})):𝐴⟶∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 55 | 51, 54 | sylib 208 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})):𝐴⟶∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 56 | | simpl1 1064 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → 𝐴 ∈ 𝑉) |
| 57 | | simpl2 1065 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card) |
| 58 | | fex2 7121 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})):𝐴⟶∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∧ 𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card) → (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) ∈ V) |
| 59 | 55, 56, 57, 58 | syl3anc 1326 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) ∈ V) |
| 60 | | ssrab2 3687 |
. . . . . . . . . . 11
⊢ {𝑦 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐵 |
| 61 | 60 | sseli 3599 |
. . . . . . . . . 10
⊢ ((𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑} → (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ 𝐵) |
| 62 | 61 | ralimi 2952 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑} → ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ 𝐵) |
| 63 | 62 | ad2antll 765 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ 𝐵) |
| 64 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 65 | 64 | fmpt 6381 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})):𝐴⟶𝐵) |
| 66 | 63, 65 | sylib 208 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})):𝐴⟶𝐵) |
| 67 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦𝐵 |
| 68 | 67 | elrabsf 3474 |
. . . . . . . . . 10
⊢ ((𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑} ↔ ((𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ 𝐵 ∧ [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑)) |
| 69 | 68 | simprbi 480 |
. . . . . . . . 9
⊢ ((𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑} → [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑) |
| 70 | 69 | ralimi 2952 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑} → ∀𝑥 ∈ 𝐴 [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑) |
| 71 | 70 | ad2antll 765 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → ∀𝑥 ∈ 𝐴 [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑) |
| 72 | 66, 71 | jca 554 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → ((𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})):𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑)) |
| 73 | | feq1 6026 |
. . . . . . . 8
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) → (𝑓:𝐴⟶𝐵 ↔ (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})):𝐴⟶𝐵)) |
| 74 | | nfmpt1 4747 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 75 | 74 | nfeq2 2780 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 76 | | fvex 6201 |
. . . . . . . . . . 11
⊢ (𝑓‘𝑥) ∈ V |
| 77 | | ac6num.1 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
| 78 | 76, 77 | sbcie 3470 |
. . . . . . . . . 10
⊢
([(𝑓‘𝑥) / 𝑦]𝜑 ↔ 𝜓) |
| 79 | | fveq1 6190 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) → (𝑓‘𝑥) = ((𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}))‘𝑥)) |
| 80 | | fvex 6201 |
. . . . . . . . . . . . 13
⊢ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ V |
| 81 | 64 | fvmpt2 6291 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ V) → ((𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}))‘𝑥) = (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 82 | 80, 81 | mpan2 707 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}))‘𝑥) = (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 83 | 79, 82 | sylan9eq 2676 |
. . . . . . . . . . 11
⊢ ((𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) = (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 84 | 83 | sbceq1d 3440 |
. . . . . . . . . 10
⊢ ((𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) ∧ 𝑥 ∈ 𝐴) → ([(𝑓‘𝑥) / 𝑦]𝜑 ↔ [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑)) |
| 85 | 78, 84 | syl5bbr 274 |
. . . . . . . . 9
⊢ ((𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑)) |
| 86 | 75, 85 | ralbida 2982 |
. . . . . . . 8
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑)) |
| 87 | 73, 86 | anbi12d 747 |
. . . . . . 7
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) → ((𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓) ↔ ((𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})):𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑))) |
| 88 | 87 | spcegv 3294 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})) ∈ V → (((𝑥 ∈ 𝐴 ↦ (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑})):𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 [(𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) / 𝑦]𝜑) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| 89 | 59, 72, 88 | sylc 65 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 90 | 89 | ex 450 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ((𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑥 ∈ 𝐴 (𝑔‘{𝑦 ∈ 𝐵 ∣ 𝜑}) ∈ {𝑦 ∈ 𝐵 ∣ 𝜑}) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| 91 | 41, 90 | syld 47 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ((𝑔:ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})⟶∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| 92 | 91 | exlimdv 1861 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → (∃𝑔(𝑔:ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})⟶∪ ran
(𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑})(𝑔‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| 93 | 31, 92 | mpd 15 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ ∪
𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ dom card ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |