MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclfval Structured version   Visualization version   Unicode version

Theorem asclfval 19334
Description: Function value of the algebraic scalars function. (Contributed by Mario Carneiro, 8-Mar-2015.)
Hypotheses
Ref Expression
asclfval.a  |-  A  =  (algSc `  W )
asclfval.f  |-  F  =  (Scalar `  W )
asclfval.k  |-  K  =  ( Base `  F
)
asclfval.s  |-  .x.  =  ( .s `  W )
asclfval.o  |-  .1.  =  ( 1r `  W )
Assertion
Ref Expression
asclfval  |-  A  =  ( x  e.  K  |->  ( x  .x.  .1.  ) )
Distinct variable groups:    x, K    x,  .1.    x,  .x.    x, W
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem asclfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 asclfval.a . 2  |-  A  =  (algSc `  W )
2 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
3 asclfval.f . . . . . . . 8  |-  F  =  (Scalar `  W )
42, 3syl6eqr 2674 . . . . . . 7  |-  ( w  =  W  ->  (Scalar `  w )  =  F )
54fveq2d 6195 . . . . . 6  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  (
Base `  F )
)
6 asclfval.k . . . . . 6  |-  K  =  ( Base `  F
)
75, 6syl6eqr 2674 . . . . 5  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  K )
8 fveq2 6191 . . . . . . 7  |-  ( w  =  W  ->  ( .s `  w )  =  ( .s `  W
) )
9 asclfval.s . . . . . . 7  |-  .x.  =  ( .s `  W )
108, 9syl6eqr 2674 . . . . . 6  |-  ( w  =  W  ->  ( .s `  w )  = 
.x.  )
11 eqidd 2623 . . . . . 6  |-  ( w  =  W  ->  x  =  x )
12 fveq2 6191 . . . . . . 7  |-  ( w  =  W  ->  ( 1r `  w )  =  ( 1r `  W
) )
13 asclfval.o . . . . . . 7  |-  .1.  =  ( 1r `  W )
1412, 13syl6eqr 2674 . . . . . 6  |-  ( w  =  W  ->  ( 1r `  w )  =  .1.  )
1510, 11, 14oveq123d 6671 . . . . 5  |-  ( w  =  W  ->  (
x ( .s `  w ) ( 1r
`  w ) )  =  ( x  .x.  .1.  ) )
167, 15mpteq12dv 4733 . . . 4  |-  ( w  =  W  ->  (
x  e.  ( Base `  (Scalar `  w )
)  |->  ( x ( .s `  w ) ( 1r `  w
) ) )  =  ( x  e.  K  |->  ( x  .x.  .1.  ) ) )
17 df-ascl 19314 . . . 4  |- algSc  =  ( w  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  w )
)  |->  ( x ( .s `  w ) ( 1r `  w
) ) ) )
183fveq2i 6194 . . . . . . 7  |-  ( Base `  F )  =  (
Base `  (Scalar `  W
) )
196, 18eqtri 2644 . . . . . 6  |-  K  =  ( Base `  (Scalar `  W ) )
20 fvex 6201 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  e.  _V
2119, 20eqeltri 2697 . . . . 5  |-  K  e. 
_V
2221mptex 6486 . . . 4  |-  ( x  e.  K  |->  ( x 
.x.  .1.  ) )  e.  _V
2316, 17, 22fvmpt 6282 . . 3  |-  ( W  e.  _V  ->  (algSc `  W )  =  ( x  e.  K  |->  ( x  .x.  .1.  )
) )
24 fvprc 6185 . . . . 5  |-  ( -.  W  e.  _V  ->  (algSc `  W )  =  (/) )
25 mpt0 6021 . . . . 5  |-  ( x  e.  (/)  |->  ( x  .x.  .1.  ) )  =  (/)
2624, 25syl6eqr 2674 . . . 4  |-  ( -.  W  e.  _V  ->  (algSc `  W )  =  ( x  e.  (/)  |->  ( x 
.x.  .1.  ) )
)
27 fvprc 6185 . . . . . . . . 9  |-  ( -.  W  e.  _V  ->  (Scalar `  W )  =  (/) )
283, 27syl5eq 2668 . . . . . . . 8  |-  ( -.  W  e.  _V  ->  F  =  (/) )
2928fveq2d 6195 . . . . . . 7  |-  ( -.  W  e.  _V  ->  (
Base `  F )  =  ( Base `  (/) ) )
30 base0 15912 . . . . . . 7  |-  (/)  =  (
Base `  (/) )
3129, 30syl6eqr 2674 . . . . . 6  |-  ( -.  W  e.  _V  ->  (
Base `  F )  =  (/) )
326, 31syl5eq 2668 . . . . 5  |-  ( -.  W  e.  _V  ->  K  =  (/) )
3332mpteq1d 4738 . . . 4  |-  ( -.  W  e.  _V  ->  ( x  e.  K  |->  ( x  .x.  .1.  )
)  =  ( x  e.  (/)  |->  ( x  .x.  .1.  ) ) )
3426, 33eqtr4d 2659 . . 3  |-  ( -.  W  e.  _V  ->  (algSc `  W )  =  ( x  e.  K  |->  ( x  .x.  .1.  )
) )
3523, 34pm2.61i 176 . 2  |-  (algSc `  W )  =  ( x  e.  K  |->  ( x  .x.  .1.  )
)
361, 35eqtri 2644 1  |-  A  =  ( x  e.  K  |->  ( x  .x.  .1.  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   1rcur 18501  algSccascl 19311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-slot 15861  df-base 15863  df-ascl 19314
This theorem is referenced by:  asclval  19335  asclfn  19336  asclf  19337  rnascl  19343  ressascl  19344  asclpropd  19346
  Copyright terms: Public domain W3C validator