MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc2 Structured version   Visualization version   GIF version

Theorem axcc2 9259
Description: A possibly more useful version of ax-cc using sequences instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013.)
Assertion
Ref Expression
axcc2 𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)))
Distinct variable group:   𝑔,𝐹,𝑛

Proof of Theorem axcc2
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . 3 𝑛if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚))
2 nfcv 2764 . . 3 𝑚if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛))
3 fveq2 6191 . . . . 5 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
43eqeq1d 2624 . . . 4 (𝑚 = 𝑛 → ((𝐹𝑚) = ∅ ↔ (𝐹𝑛) = ∅))
54, 3ifbieq2d 4111 . . 3 (𝑚 = 𝑛 → if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)) = if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
61, 2, 5cbvmpt 4749 . 2 (𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚))) = (𝑛 ∈ ω ↦ if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
7 nfcv 2764 . . 3 𝑛({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚))
8 nfcv 2764 . . . 4 𝑚{𝑛}
9 nffvmpt1 6199 . . . 4 𝑚((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛)
108, 9nfxp 5142 . . 3 𝑚({𝑛} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛))
11 sneq 4187 . . . 4 (𝑚 = 𝑛 → {𝑚} = {𝑛})
12 fveq2 6191 . . . 4 (𝑚 = 𝑛 → ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚) = ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛))
1311, 12xpeq12d 5140 . . 3 (𝑚 = 𝑛 → ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)) = ({𝑛} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛)))
147, 10, 13cbvmpt 4749 . 2 (𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚))) = (𝑛 ∈ ω ↦ ({𝑛} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛)))
15 nfcv 2764 . . 3 𝑛(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚)))
16 nfcv 2764 . . . 4 𝑚2nd
17 nfcv 2764 . . . . 5 𝑚𝑓
18 nffvmpt1 6199 . . . . 5 𝑚((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛)
1917, 18nffv 6198 . . . 4 𝑚(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛))
2016, 19nffv 6198 . . 3 𝑚(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛)))
21 fveq2 6191 . . . . 5 (𝑚 = 𝑛 → ((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚) = ((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛))
2221fveq2d 6195 . . . 4 (𝑚 = 𝑛 → (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚)) = (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛)))
2322fveq2d 6195 . . 3 (𝑚 = 𝑛 → (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚))) = (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛))))
2415, 20, 23cbvmpt 4749 . 2 (𝑚 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚)))) = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛))))
256, 14, 24axcc2lem 9258 1 𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  c0 3915  ifcif 4086  {csn 4177  cmpt 4729   × cxp 5112   Fn wfn 5883  cfv 5888  ωcom 7065  2nd c2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-2nd 7169  df-er 7742  df-en 7956
This theorem is referenced by:  axcc3  9260  acncc  9262  domtriomlem  9264
  Copyright terms: Public domain W3C validator