| Step | Hyp | Ref
| Expression |
| 1 | | axcc3.2 |
. . 3
⊢ 𝑁 ≈
ω |
| 2 | | relen 7960 |
. . . 4
⊢ Rel
≈ |
| 3 | 2 | brrelexi 5158 |
. . 3
⊢ (𝑁 ≈ ω → 𝑁 ∈ V) |
| 4 | | mptexg 6484 |
. . 3
⊢ (𝑁 ∈ V → (𝑛 ∈ 𝑁 ↦ 𝐹) ∈ V) |
| 5 | 1, 3, 4 | mp2b 10 |
. 2
⊢ (𝑛 ∈ 𝑁 ↦ 𝐹) ∈ V |
| 6 | | bren 7964 |
. . . 4
⊢ (𝑁 ≈ ω ↔
∃ℎ ℎ:𝑁–1-1-onto→ω) |
| 7 | 1, 6 | mpbi 220 |
. . 3
⊢
∃ℎ ℎ:𝑁–1-1-onto→ω |
| 8 | | axcc2 9259 |
. . . . 5
⊢
∃𝑔(𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) |
| 9 | | f1of 6137 |
. . . . . . . . . . 11
⊢ (ℎ:𝑁–1-1-onto→ω → ℎ:𝑁⟶ω) |
| 10 | | fnfco 6069 |
. . . . . . . . . . 11
⊢ ((𝑔 Fn ω ∧ ℎ:𝑁⟶ω) → (𝑔 ∘ ℎ) Fn 𝑁) |
| 11 | 9, 10 | sylan2 491 |
. . . . . . . . . 10
⊢ ((𝑔 Fn ω ∧ ℎ:𝑁–1-1-onto→ω) → (𝑔 ∘ ℎ) Fn 𝑁) |
| 12 | 11 | adantlr 751 |
. . . . . . . . 9
⊢ (((𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ ℎ:𝑁–1-1-onto→ω) → (𝑔 ∘ ℎ) Fn 𝑁) |
| 13 | 12 | 3adant1 1079 |
. . . . . . . 8
⊢ ((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ ℎ:𝑁–1-1-onto→ω) → (𝑔 ∘ ℎ) Fn 𝑁) |
| 14 | | nfmpt1 4747 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(𝑛 ∈ 𝑁 ↦ 𝐹) |
| 15 | 14 | nfeq2 2780 |
. . . . . . . . . 10
⊢
Ⅎ𝑛 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) |
| 16 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) |
| 17 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑛 ℎ:𝑁–1-1-onto→ω |
| 18 | 15, 16, 17 | nf3an 1831 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ ℎ:𝑁–1-1-onto→ω) |
| 19 | 9 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . 18
⊢ ((ℎ:𝑁–1-1-onto→ω ∧ 𝑛 ∈ 𝑁) → (ℎ‘𝑛) ∈ ω) |
| 20 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = (ℎ‘𝑛) → ((𝑘 ∘ ◡ℎ)‘𝑚) = ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛))) |
| 21 | 20 | neeq1d 2853 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = (ℎ‘𝑛) → (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ ↔ ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) ≠ ∅)) |
| 22 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = (ℎ‘𝑛) → (𝑔‘𝑚) = (𝑔‘(ℎ‘𝑛))) |
| 23 | 22, 20 | eleq12d 2695 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = (ℎ‘𝑛) → ((𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚) ↔ (𝑔‘(ℎ‘𝑛)) ∈ ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)))) |
| 24 | 21, 23 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = (ℎ‘𝑛) → ((((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚)) ↔ (((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) ≠ ∅ → (𝑔‘(ℎ‘𝑛)) ∈ ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛))))) |
| 25 | 24 | rspcv 3305 |
. . . . . . . . . . . . . . . . . 18
⊢ ((ℎ‘𝑛) ∈ ω → (∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚)) → (((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) ≠ ∅ → (𝑔‘(ℎ‘𝑛)) ∈ ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛))))) |
| 26 | 19, 25 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℎ:𝑁–1-1-onto→ω ∧ 𝑛 ∈ 𝑁) → (∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚)) → (((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) ≠ ∅ → (𝑔‘(ℎ‘𝑛)) ∈ ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛))))) |
| 27 | 26 | 3ad2antl3 1225 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ 𝑔 Fn ω ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑛 ∈ 𝑁) → (∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚)) → (((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) ≠ ∅ → (𝑔‘(ℎ‘𝑛)) ∈ ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛))))) |
| 28 | | f1ocnv 6149 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ:𝑁–1-1-onto→ω → ◡ℎ:ω–1-1-onto→𝑁) |
| 29 | | f1of 6137 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (◡ℎ:ω–1-1-onto→𝑁 → ◡ℎ:ω⟶𝑁) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ:𝑁–1-1-onto→ω → ◡ℎ:ω⟶𝑁) |
| 31 | | fvco3 6275 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((◡ℎ:ω⟶𝑁 ∧ (ℎ‘𝑛) ∈ ω) → ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) = (𝑘‘(◡ℎ‘(ℎ‘𝑛)))) |
| 32 | 30, 31 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ℎ:𝑁–1-1-onto→ω ∧ (ℎ‘𝑛) ∈ ω) → ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) = (𝑘‘(◡ℎ‘(ℎ‘𝑛)))) |
| 33 | 19, 32 | syldan 487 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℎ:𝑁–1-1-onto→ω ∧ 𝑛 ∈ 𝑁) → ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) = (𝑘‘(◡ℎ‘(ℎ‘𝑛)))) |
| 34 | 33 | 3adant1 1079 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ ℎ:𝑁–1-1-onto→ω ∧ 𝑛 ∈ 𝑁) → ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) = (𝑘‘(◡ℎ‘(ℎ‘𝑛)))) |
| 35 | | f1ocnvfv1 6532 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ℎ:𝑁–1-1-onto→ω ∧ 𝑛 ∈ 𝑁) → (◡ℎ‘(ℎ‘𝑛)) = 𝑛) |
| 36 | 35 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℎ:𝑁–1-1-onto→ω ∧ 𝑛 ∈ 𝑁) → (𝑘‘(◡ℎ‘(ℎ‘𝑛))) = (𝑘‘𝑛)) |
| 37 | 36 | 3adant1 1079 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ ℎ:𝑁–1-1-onto→ω ∧ 𝑛 ∈ 𝑁) → (𝑘‘(◡ℎ‘(ℎ‘𝑛))) = (𝑘‘𝑛)) |
| 38 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) → (𝑘‘𝑛) = ((𝑛 ∈ 𝑁 ↦ 𝐹)‘𝑛)) |
| 39 | | axcc3.1 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝐹 ∈ V |
| 40 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ 𝑁 ↦ 𝐹) = (𝑛 ∈ 𝑁 ↦ 𝐹) |
| 41 | 40 | fvmpt2 6291 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ 𝑁 ∧ 𝐹 ∈ V) → ((𝑛 ∈ 𝑁 ↦ 𝐹)‘𝑛) = 𝐹) |
| 42 | 39, 41 | mpan2 707 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ 𝑁 → ((𝑛 ∈ 𝑁 ↦ 𝐹)‘𝑛) = 𝐹) |
| 43 | 38, 42 | sylan9eq 2676 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ 𝑛 ∈ 𝑁) → (𝑘‘𝑛) = 𝐹) |
| 44 | 43 | 3adant2 1080 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ ℎ:𝑁–1-1-onto→ω ∧ 𝑛 ∈ 𝑁) → (𝑘‘𝑛) = 𝐹) |
| 45 | 34, 37, 44 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ ℎ:𝑁–1-1-onto→ω ∧ 𝑛 ∈ 𝑁) → ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) = 𝐹) |
| 46 | 45 | 3expa 1265 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑛 ∈ 𝑁) → ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) = 𝐹) |
| 47 | 46 | 3adantl2 1218 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ 𝑔 Fn ω ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑛 ∈ 𝑁) → ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) = 𝐹) |
| 48 | 47 | neeq1d 2853 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ 𝑔 Fn ω ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑛 ∈ 𝑁) → (((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) ≠ ∅ ↔ 𝐹 ≠ ∅)) |
| 49 | 9 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ 𝑔 Fn ω ∧ ℎ:𝑁–1-1-onto→ω) → ℎ:𝑁⟶ω) |
| 50 | | fvco3 6275 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℎ:𝑁⟶ω ∧ 𝑛 ∈ 𝑁) → ((𝑔 ∘ ℎ)‘𝑛) = (𝑔‘(ℎ‘𝑛))) |
| 51 | 49, 50 | sylan 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ 𝑔 Fn ω ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑛 ∈ 𝑁) → ((𝑔 ∘ ℎ)‘𝑛) = (𝑔‘(ℎ‘𝑛))) |
| 52 | 51 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ 𝑔 Fn ω ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑛 ∈ 𝑁) → (((𝑔 ∘ ℎ)‘𝑛) ∈ ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) ↔ (𝑔‘(ℎ‘𝑛)) ∈ ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)))) |
| 53 | 47 | eleq2d 2687 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ 𝑔 Fn ω ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑛 ∈ 𝑁) → (((𝑔 ∘ ℎ)‘𝑛) ∈ ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) ↔ ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹)) |
| 54 | 52, 53 | bitr3d 270 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ 𝑔 Fn ω ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑛 ∈ 𝑁) → ((𝑔‘(ℎ‘𝑛)) ∈ ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) ↔ ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹)) |
| 55 | 48, 54 | imbi12d 334 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ 𝑔 Fn ω ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑛 ∈ 𝑁) → ((((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) ≠ ∅ → (𝑔‘(ℎ‘𝑛)) ∈ ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛))) ↔ (𝐹 ≠ ∅ → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹))) |
| 56 | 27, 55 | sylibd 229 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ 𝑔 Fn ω ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑛 ∈ 𝑁) → (∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚)) → (𝐹 ≠ ∅ → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹))) |
| 57 | 56 | ex 450 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ 𝑔 Fn ω ∧ ℎ:𝑁–1-1-onto→ω) → (𝑛 ∈ 𝑁 → (∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚)) → (𝐹 ≠ ∅ → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹)))) |
| 58 | 57 | com23 86 |
. . . . . . . . . . . . 13
⊢ ((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ 𝑔 Fn ω ∧ ℎ:𝑁–1-1-onto→ω) → (∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚)) → (𝑛 ∈ 𝑁 → (𝐹 ≠ ∅ → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹)))) |
| 59 | 58 | 3exp 1264 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) → (𝑔 Fn ω → (ℎ:𝑁–1-1-onto→ω → (∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚)) → (𝑛 ∈ 𝑁 → (𝐹 ≠ ∅ → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹)))))) |
| 60 | 59 | com34 91 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) → (𝑔 Fn ω → (∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚)) → (ℎ:𝑁–1-1-onto→ω → (𝑛 ∈ 𝑁 → (𝐹 ≠ ∅ → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹)))))) |
| 61 | 60 | imp32 449 |
. . . . . . . . . 10
⊢ ((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚)))) → (ℎ:𝑁–1-1-onto→ω → (𝑛 ∈ 𝑁 → (𝐹 ≠ ∅ → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹)))) |
| 62 | 61 | 3impia 1261 |
. . . . . . . . 9
⊢ ((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ ℎ:𝑁–1-1-onto→ω) → (𝑛 ∈ 𝑁 → (𝐹 ≠ ∅ → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹))) |
| 63 | 18, 62 | ralrimi 2957 |
. . . . . . . 8
⊢ ((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ ℎ:𝑁–1-1-onto→ω) → ∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹)) |
| 64 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑔 ∈ V |
| 65 | | vex 3203 |
. . . . . . . . . 10
⊢ ℎ ∈ V |
| 66 | 64, 65 | coex 7118 |
. . . . . . . . 9
⊢ (𝑔 ∘ ℎ) ∈ V |
| 67 | | fneq1 5979 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑔 ∘ ℎ) → (𝑓 Fn 𝑁 ↔ (𝑔 ∘ ℎ) Fn 𝑁)) |
| 68 | | fveq1 6190 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑔 ∘ ℎ) → (𝑓‘𝑛) = ((𝑔 ∘ ℎ)‘𝑛)) |
| 69 | 68 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑔 ∘ ℎ) → ((𝑓‘𝑛) ∈ 𝐹 ↔ ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹)) |
| 70 | 69 | imbi2d 330 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑔 ∘ ℎ) → ((𝐹 ≠ ∅ → (𝑓‘𝑛) ∈ 𝐹) ↔ (𝐹 ≠ ∅ → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹))) |
| 71 | 70 | ralbidv 2986 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑔 ∘ ℎ) → (∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → (𝑓‘𝑛) ∈ 𝐹) ↔ ∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹))) |
| 72 | 67, 71 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ∘ ℎ) → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → (𝑓‘𝑛) ∈ 𝐹)) ↔ ((𝑔 ∘ ℎ) Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹)))) |
| 73 | 66, 72 | spcev 3300 |
. . . . . . . 8
⊢ (((𝑔 ∘ ℎ) Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹)) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → (𝑓‘𝑛) ∈ 𝐹))) |
| 74 | 13, 63, 73 | syl2anc 693 |
. . . . . . 7
⊢ ((𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ ℎ:𝑁–1-1-onto→ω) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → (𝑓‘𝑛) ∈ 𝐹))) |
| 75 | 74 | 3exp 1264 |
. . . . . 6
⊢ (𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) → ((𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) → (ℎ:𝑁–1-1-onto→ω → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → (𝑓‘𝑛) ∈ 𝐹))))) |
| 76 | 75 | exlimdv 1861 |
. . . . 5
⊢ (𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) → (∃𝑔(𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘 ∘ ◡ℎ)‘𝑚) ≠ ∅ → (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) → (ℎ:𝑁–1-1-onto→ω → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → (𝑓‘𝑛) ∈ 𝐹))))) |
| 77 | 8, 76 | mpi 20 |
. . . 4
⊢ (𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) → (ℎ:𝑁–1-1-onto→ω → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → (𝑓‘𝑛) ∈ 𝐹)))) |
| 78 | 77 | exlimdv 1861 |
. . 3
⊢ (𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) → (∃ℎ ℎ:𝑁–1-1-onto→ω → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → (𝑓‘𝑛) ∈ 𝐹)))) |
| 79 | 7, 78 | mpi 20 |
. 2
⊢ (𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → (𝑓‘𝑛) ∈ 𝐹))) |
| 80 | 5, 79 | vtocle 3282 |
1
⊢
∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → (𝑓‘𝑛) ∈ 𝐹)) |