MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc2 Structured version   Visualization version   Unicode version

Theorem axcc2 9259
Description: A possibly more useful version of ax-cc using sequences instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013.)
Assertion
Ref Expression
axcc2  |-  E. g
( g  Fn  om  /\ 
A. n  e.  om  ( ( F `  n )  =/=  (/)  ->  (
g `  n )  e.  ( F `  n
) ) )
Distinct variable group:    g, F, n

Proof of Theorem axcc2
Dummy variables  f  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . 3  |-  F/_ n if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) )
2 nfcv 2764 . . 3  |-  F/_ m if ( ( F `  n )  =  (/) ,  { (/) } ,  ( F `  n ) )
3 fveq2 6191 . . . . 5  |-  ( m  =  n  ->  ( F `  m )  =  ( F `  n ) )
43eqeq1d 2624 . . . 4  |-  ( m  =  n  ->  (
( F `  m
)  =  (/)  <->  ( F `  n )  =  (/) ) )
54, 3ifbieq2d 4111 . . 3  |-  ( m  =  n  ->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) )  =  if ( ( F `  n
)  =  (/) ,  { (/)
} ,  ( F `
 n ) ) )
61, 2, 5cbvmpt 4749 . 2  |-  ( m  e.  om  |->  if ( ( F `  m
)  =  (/) ,  { (/)
} ,  ( F `
 m ) ) )  =  ( n  e.  om  |->  if ( ( F `  n
)  =  (/) ,  { (/)
} ,  ( F `
 n ) ) )
7 nfcv 2764 . . 3  |-  F/_ n
( { m }  X.  ( ( m  e. 
om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `
 m ) )
8 nfcv 2764 . . . 4  |-  F/_ m { n }
9 nffvmpt1 6199 . . . 4  |-  F/_ m
( ( m  e. 
om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `
 n )
108, 9nfxp 5142 . . 3  |-  F/_ m
( { n }  X.  ( ( m  e. 
om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `
 n ) )
11 sneq 4187 . . . 4  |-  ( m  =  n  ->  { m }  =  { n } )
12 fveq2 6191 . . . 4  |-  ( m  =  n  ->  (
( m  e.  om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `  m
)  =  ( ( m  e.  om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `  n
) )
1311, 12xpeq12d 5140 . . 3  |-  ( m  =  n  ->  ( { m }  X.  ( ( m  e. 
om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `
 m ) )  =  ( { n }  X.  ( ( m  e.  om  |->  if ( ( F `  m
)  =  (/) ,  { (/)
} ,  ( F `
 m ) ) ) `  n ) ) )
147, 10, 13cbvmpt 4749 . 2  |-  ( m  e.  om  |->  ( { m }  X.  (
( m  e.  om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `  m
) ) )  =  ( n  e.  om  |->  ( { n }  X.  ( ( m  e. 
om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `
 n ) ) )
15 nfcv 2764 . . 3  |-  F/_ n
( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( ( m  e. 
om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `
 m ) ) ) `  m ) ) )
16 nfcv 2764 . . . 4  |-  F/_ m 2nd
17 nfcv 2764 . . . . 5  |-  F/_ m
f
18 nffvmpt1 6199 . . . . 5  |-  F/_ m
( ( m  e. 
om  |->  ( { m }  X.  ( ( m  e.  om  |->  if ( ( F `  m
)  =  (/) ,  { (/)
} ,  ( F `
 m ) ) ) `  m ) ) ) `  n
)
1917, 18nffv 6198 . . . 4  |-  F/_ m
( f `  (
( m  e.  om  |->  ( { m }  X.  ( ( m  e. 
om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `
 m ) ) ) `  n ) )
2016, 19nffv 6198 . . 3  |-  F/_ m
( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( ( m  e. 
om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `
 m ) ) ) `  n ) ) )
21 fveq2 6191 . . . . 5  |-  ( m  =  n  ->  (
( m  e.  om  |->  ( { m }  X.  ( ( m  e. 
om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `
 m ) ) ) `  m )  =  ( ( m  e.  om  |->  ( { m }  X.  (
( m  e.  om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `  m
) ) ) `  n ) )
2221fveq2d 6195 . . . 4  |-  ( m  =  n  ->  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( ( m  e. 
om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `
 m ) ) ) `  m ) )  =  ( f `
 ( ( m  e.  om  |->  ( { m }  X.  (
( m  e.  om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `  m
) ) ) `  n ) ) )
2322fveq2d 6195 . . 3  |-  ( m  =  n  ->  ( 2nd `  ( f `  ( ( m  e. 
om  |->  ( { m }  X.  ( ( m  e.  om  |->  if ( ( F `  m
)  =  (/) ,  { (/)
} ,  ( F `
 m ) ) ) `  m ) ) ) `  m
) ) )  =  ( 2nd `  (
f `  ( (
m  e.  om  |->  ( { m }  X.  ( ( m  e. 
om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `
 m ) ) ) `  n ) ) ) )
2415, 20, 23cbvmpt 4749 . 2  |-  ( m  e.  om  |->  ( 2nd `  ( f `  (
( m  e.  om  |->  ( { m }  X.  ( ( m  e. 
om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `
 m ) ) ) `  m ) ) ) )  =  ( n  e.  om  |->  ( 2nd `  ( f `
 ( ( m  e.  om  |->  ( { m }  X.  (
( m  e.  om  |->  if ( ( F `  m )  =  (/) ,  { (/) } ,  ( F `  m ) ) ) `  m
) ) ) `  n ) ) ) )
256, 14, 24axcc2lem 9258 1  |-  E. g
( g  Fn  om  /\ 
A. n  e.  om  ( ( F `  n )  =/=  (/)  ->  (
g `  n )  e.  ( F `  n
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   (/)c0 3915   ifcif 4086   {csn 4177    |-> cmpt 4729    X. cxp 5112    Fn wfn 5883   ` cfv 5888   omcom 7065   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-2nd 7169  df-er 7742  df-en 7956
This theorem is referenced by:  axcc3  9260  acncc  9262  domtriomlem  9264
  Copyright terms: Public domain W3C validator