![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axdc | Structured version Visualization version GIF version |
Description: This theorem derives ax-dc 9268 using ax-ac 9281 and ax-inf 8535. Thus, AC implies DC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013.) |
Ref | Expression |
---|---|
axdc | ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4657 | . . . . . . . . 9 ⊢ (𝑤 = 𝑧 → (𝑢𝑥𝑤 ↔ 𝑢𝑥𝑧)) | |
2 | 1 | cbvabv 2747 | . . . . . . . 8 ⊢ {𝑤 ∣ 𝑢𝑥𝑤} = {𝑧 ∣ 𝑢𝑥𝑧} |
3 | breq1 4656 | . . . . . . . . 9 ⊢ (𝑢 = 𝑣 → (𝑢𝑥𝑧 ↔ 𝑣𝑥𝑧)) | |
4 | 3 | abbidv 2741 | . . . . . . . 8 ⊢ (𝑢 = 𝑣 → {𝑧 ∣ 𝑢𝑥𝑧} = {𝑧 ∣ 𝑣𝑥𝑧}) |
5 | 2, 4 | syl5eq 2668 | . . . . . . 7 ⊢ (𝑢 = 𝑣 → {𝑤 ∣ 𝑢𝑥𝑤} = {𝑧 ∣ 𝑣𝑥𝑧}) |
6 | 5 | fveq2d 6195 | . . . . . 6 ⊢ (𝑢 = 𝑣 → (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤}) = (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) |
7 | 6 | cbvmptv 4750 | . . . . 5 ⊢ (𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) |
8 | rdgeq1 7507 | . . . . 5 ⊢ ((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})) = (𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})) → rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦)) | |
9 | reseq1 5390 | . . . . 5 ⊢ (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) = rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦) → (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) ↾ ω) = (rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦) ↾ ω)) | |
10 | 7, 8, 9 | mp2b 10 | . . . 4 ⊢ (rec((𝑢 ∈ V ↦ (𝑔‘{𝑤 ∣ 𝑢𝑥𝑤})), 𝑦) ↾ ω) = (rec((𝑣 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑣𝑥𝑧})), 𝑦) ↾ ω) |
11 | 10 | axdclem2 9342 | . . 3 ⊢ (∃𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛))) |
12 | 11 | exlimiv 1858 | . 2 ⊢ (∃𝑦∃𝑧 𝑦𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛))) |
13 | 12 | imp 445 | 1 ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∃wex 1704 {cab 2608 ∀wral 2912 Vcvv 3200 ⊆ wss 3574 class class class wbr 4653 ↦ cmpt 4729 dom cdm 5114 ran crn 5115 ↾ cres 5116 suc csuc 5725 ‘cfv 5888 ωcom 7065 reccrdg 7505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-ac2 9285 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-ac 8939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |