MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdclem2 Structured version   Visualization version   GIF version

Theorem axdclem2 9342
Description: Lemma for axdc 9343. Using the full Axiom of Choice, we can construct a choice function 𝑔 on 𝒫 dom 𝑥. From this, we can build a sequence 𝐹 starting at any value 𝑠 ∈ dom 𝑥 by repeatedly applying 𝑔 to the set (𝐹𝑥) (where 𝑥 is the value from the previous iteration). (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdclem2.1 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
Assertion
Ref Expression
axdclem2 (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
Distinct variable groups:   𝑓,𝐹,𝑛   𝑦,𝐹,𝑧,𝑛   𝑓,𝑔,𝑥,𝑛   𝑔,𝑠,𝑦,𝑛   𝑧,𝑔   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑔,𝑠)

Proof of Theorem axdclem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 frfnom 7530 . . . . . . . 8 (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω) Fn ω
2 axdclem2.1 . . . . . . . . 9 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
32fneq1i 5985 . . . . . . . 8 (𝐹 Fn ω ↔ (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω) Fn ω)
41, 3mpbir 221 . . . . . . 7 𝐹 Fn ω
54a1i 11 . . . . . 6 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → 𝐹 Fn ω)
6 fveq2 6191 . . . . . . . . . . 11 (𝑛 = ∅ → (𝐹𝑛) = (𝐹‘∅))
7 suceq 5790 . . . . . . . . . . . 12 (𝑛 = ∅ → suc 𝑛 = suc ∅)
87fveq2d 6195 . . . . . . . . . . 11 (𝑛 = ∅ → (𝐹‘suc 𝑛) = (𝐹‘suc ∅))
96, 8breq12d 4666 . . . . . . . . . 10 (𝑛 = ∅ → ((𝐹𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹‘∅)𝑥(𝐹‘suc ∅)))
10 fveq2 6191 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
11 suceq 5790 . . . . . . . . . . . 12 (𝑛 = 𝑘 → suc 𝑛 = suc 𝑘)
1211fveq2d 6195 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹‘suc 𝑛) = (𝐹‘suc 𝑘))
1310, 12breq12d 4666 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹𝑘)𝑥(𝐹‘suc 𝑘)))
14 fveq2 6191 . . . . . . . . . . 11 (𝑛 = suc 𝑘 → (𝐹𝑛) = (𝐹‘suc 𝑘))
15 suceq 5790 . . . . . . . . . . . 12 (𝑛 = suc 𝑘 → suc 𝑛 = suc suc 𝑘)
1615fveq2d 6195 . . . . . . . . . . 11 (𝑛 = suc 𝑘 → (𝐹‘suc 𝑛) = (𝐹‘suc suc 𝑘))
1714, 16breq12d 4666 . . . . . . . . . 10 (𝑛 = suc 𝑘 → ((𝐹𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
182fveq1i 6192 . . . . . . . . . . . . . . . 16 (𝐹‘∅) = ((rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)‘∅)
19 vex 3203 . . . . . . . . . . . . . . . . 17 𝑠 ∈ V
20 fr0g 7531 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ V → ((rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)‘∅) = 𝑠)
2119, 20ax-mp 5 . . . . . . . . . . . . . . . 16 ((rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)‘∅) = 𝑠
2218, 21eqtri 2644 . . . . . . . . . . . . . . 15 (𝐹‘∅) = 𝑠
2322breq1i 4660 . . . . . . . . . . . . . 14 ((𝐹‘∅)𝑥𝑧𝑠𝑥𝑧)
2423biimpri 218 . . . . . . . . . . . . 13 (𝑠𝑥𝑧 → (𝐹‘∅)𝑥𝑧)
2524eximi 1762 . . . . . . . . . . . 12 (∃𝑧 𝑠𝑥𝑧 → ∃𝑧(𝐹‘∅)𝑥𝑧)
26 peano1 7085 . . . . . . . . . . . . 13 ∅ ∈ ω
272axdclem 9341 . . . . . . . . . . . . 13 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘∅)𝑥𝑧) → (∅ ∈ ω → (𝐹‘∅)𝑥(𝐹‘suc ∅)))
2826, 27mpi 20 . . . . . . . . . . . 12 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘∅)𝑥𝑧) → (𝐹‘∅)𝑥(𝐹‘suc ∅))
2925, 28syl3an3 1361 . . . . . . . . . . 11 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧 𝑠𝑥𝑧) → (𝐹‘∅)𝑥(𝐹‘suc ∅))
30293com23 1271 . . . . . . . . . 10 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝐹‘∅)𝑥(𝐹‘suc ∅))
31 fvex 6201 . . . . . . . . . . . . . . . . 17 (𝐹𝑘) ∈ V
32 fvex 6201 . . . . . . . . . . . . . . . . 17 (𝐹‘suc 𝑘) ∈ V
3331, 32brelrn 5356 . . . . . . . . . . . . . . . 16 ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘) ∈ ran 𝑥)
34 ssel 3597 . . . . . . . . . . . . . . . 16 (ran 𝑥 ⊆ dom 𝑥 → ((𝐹‘suc 𝑘) ∈ ran 𝑥 → (𝐹‘suc 𝑘) ∈ dom 𝑥))
3533, 34syl5 34 . . . . . . . . . . . . . . 15 (ran 𝑥 ⊆ dom 𝑥 → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘) ∈ dom 𝑥))
3632eldm 5321 . . . . . . . . . . . . . . 15 ((𝐹‘suc 𝑘) ∈ dom 𝑥 ↔ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧)
3735, 36syl6ib 241 . . . . . . . . . . . . . 14 (ran 𝑥 ⊆ dom 𝑥 → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧))
3837ad2antll 765 . . . . . . . . . . . . 13 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧))
39 peano2 7086 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
402axdclem 9341 . . . . . . . . . . . . . . . . 17 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧) → (suc 𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
4139, 40syl5 34 . . . . . . . . . . . . . . . 16 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧) → (𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
42413expia 1267 . . . . . . . . . . . . . . 15 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))))
4342com3r 87 . . . . . . . . . . . . . 14 (𝑘 ∈ ω → ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))))
4443imp 445 . . . . . . . . . . . . 13 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
4538, 44syld 47 . . . . . . . . . . . 12 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
46453adantr2 1221 . . . . . . . . . . 11 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
4746ex 450 . . . . . . . . . 10 (𝑘 ∈ ω → ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))))
489, 13, 17, 30, 47finds2 7094 . . . . . . . . 9 (𝑛 ∈ ω → ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
4948com12 32 . . . . . . . 8 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝑛 ∈ ω → (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
50 fvex 6201 . . . . . . . . 9 (𝐹𝑛) ∈ V
51 fvex 6201 . . . . . . . . 9 (𝐹‘suc 𝑛) ∈ V
5250, 51breldm 5329 . . . . . . . 8 ((𝐹𝑛)𝑥(𝐹‘suc 𝑛) → (𝐹𝑛) ∈ dom 𝑥)
5349, 52syl6 35 . . . . . . 7 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝑛 ∈ ω → (𝐹𝑛) ∈ dom 𝑥))
5453ralrimiv 2965 . . . . . 6 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∀𝑛 ∈ ω (𝐹𝑛) ∈ dom 𝑥)
55 ffnfv 6388 . . . . . 6 (𝐹:ω⟶dom 𝑥 ↔ (𝐹 Fn ω ∧ ∀𝑛 ∈ ω (𝐹𝑛) ∈ dom 𝑥))
565, 54, 55sylanbrc 698 . . . . 5 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → 𝐹:ω⟶dom 𝑥)
57 omex 8540 . . . . . 6 ω ∈ V
5857a1i 11 . . . . 5 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ω ∈ V)
59 vex 3203 . . . . . . 7 𝑥 ∈ V
6059dmex 7099 . . . . . 6 dom 𝑥 ∈ V
6160a1i 11 . . . . 5 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → dom 𝑥 ∈ V)
62 fex2 7121 . . . . 5 ((𝐹:ω⟶dom 𝑥 ∧ ω ∈ V ∧ dom 𝑥 ∈ V) → 𝐹 ∈ V)
6356, 58, 61, 62syl3anc 1326 . . . 4 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → 𝐹 ∈ V)
6449ralrimiv 2965 . . . 4 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∀𝑛 ∈ ω (𝐹𝑛)𝑥(𝐹‘suc 𝑛))
65 fveq1 6190 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑛) = (𝐹𝑛))
66 fveq1 6190 . . . . . . 7 (𝑓 = 𝐹 → (𝑓‘suc 𝑛) = (𝐹‘suc 𝑛))
6765, 66breq12d 4666 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
6867ralbidv 2986 . . . . 5 (𝑓 = 𝐹 → (∀𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ ∀𝑛 ∈ ω (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
6968spcegv 3294 . . . 4 (𝐹 ∈ V → (∀𝑛 ∈ ω (𝐹𝑛)𝑥(𝐹‘suc 𝑛) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
7063, 64, 69sylc 65 . . 3 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
71703exp 1264 . 2 (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))))
7260pwex 4848 . . 3 𝒫 dom 𝑥 ∈ V
7372ac4c 9298 . 2 𝑔𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)
7471, 73exlimiiv 1859 1 (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  wral 2912  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  cres 5116  suc csuc 5725   Fn wfn 5883  wf 5884  cfv 5888  ωcom 7065  reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-ac 8939
This theorem is referenced by:  axdc  9343
  Copyright terms: Public domain W3C validator