MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem1 Structured version   Visualization version   GIF version

Theorem bcthlem1 23121
Description: Lemma for bcth 23126. Substitutions for the function 𝐹. (Contributed by Mario Carneiro, 9-Jan-2014.)
Hypotheses
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
bcthlem.4 (𝜑𝐷 ∈ (CMet‘𝑋))
bcthlem.5 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
Assertion
Ref Expression
bcthlem1 ((𝜑 ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (𝑋 × ℝ+))) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ (𝐶 ∈ (𝑋 × ℝ+) ∧ (2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)))))
Distinct variable groups:   𝑘,𝑟,𝑥,𝑧,𝐴   𝐵,𝑘,𝑟,𝑥,𝑧   𝐶,𝑟,𝑥   𝐷,𝑘,𝑟,𝑥,𝑧   𝑘,𝐹,𝑟,𝑥,𝑧   𝑘,𝐽,𝑟,𝑥,𝑧   𝑘,𝑀,𝑟,𝑥,𝑧   𝜑,𝑘,𝑟,𝑥,𝑧   𝑘,𝑋,𝑟,𝑥,𝑧
Allowed substitution hints:   𝐶(𝑧,𝑘)

Proof of Theorem bcthlem1
StepHypRef Expression
1 opabssxp 5193 . . . . . . 7 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))} ⊆ (𝑋 × ℝ+)
2 bcthlem.4 . . . . . . . . 9 (𝜑𝐷 ∈ (CMet‘𝑋))
3 elfvdm 6220 . . . . . . . . 9 (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet)
42, 3syl 17 . . . . . . . 8 (𝜑𝑋 ∈ dom CMet)
5 reex 10027 . . . . . . . . 9 ℝ ∈ V
6 rpssre 11843 . . . . . . . . 9 + ⊆ ℝ
75, 6ssexi 4803 . . . . . . . 8 + ∈ V
8 xpexg 6960 . . . . . . . 8 ((𝑋 ∈ dom CMet ∧ ℝ+ ∈ V) → (𝑋 × ℝ+) ∈ V)
94, 7, 8sylancl 694 . . . . . . 7 (𝜑 → (𝑋 × ℝ+) ∈ V)
10 ssexg 4804 . . . . . . 7 (({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))} ⊆ (𝑋 × ℝ+) ∧ (𝑋 × ℝ+) ∈ V) → {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))} ∈ V)
111, 9, 10sylancr 695 . . . . . 6 (𝜑 → {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))} ∈ V)
12 oveq2 6658 . . . . . . . . . . 11 (𝑘 = 𝐴 → (1 / 𝑘) = (1 / 𝐴))
1312breq2d 4665 . . . . . . . . . 10 (𝑘 = 𝐴 → (𝑟 < (1 / 𝑘) ↔ 𝑟 < (1 / 𝐴)))
14 fveq2 6191 . . . . . . . . . . . 12 (𝑘 = 𝐴 → (𝑀𝑘) = (𝑀𝐴))
1514difeq2d 3728 . . . . . . . . . . 11 (𝑘 = 𝐴 → (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) = (((ball‘𝐷)‘𝑧) ∖ (𝑀𝐴)))
1615sseq2d 3633 . . . . . . . . . 10 (𝑘 = 𝐴 → (((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ↔ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝐴))))
1713, 16anbi12d 747 . . . . . . . . 9 (𝑘 = 𝐴 → ((𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) ↔ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝐴)))))
1817anbi2d 740 . . . . . . . 8 (𝑘 = 𝐴 → (((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))) ↔ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝐴))))))
1918opabbidv 4716 . . . . . . 7 (𝑘 = 𝐴 → {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝐴))))})
20 fveq2 6191 . . . . . . . . . . . 12 (𝑧 = 𝐵 → ((ball‘𝐷)‘𝑧) = ((ball‘𝐷)‘𝐵))
2120difeq1d 3727 . . . . . . . . . . 11 (𝑧 = 𝐵 → (((ball‘𝐷)‘𝑧) ∖ (𝑀𝐴)) = (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)))
2221sseq2d 3633 . . . . . . . . . 10 (𝑧 = 𝐵 → (((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝐴)) ↔ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))
2322anbi2d 740 . . . . . . . . 9 (𝑧 = 𝐵 → ((𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝐴))) ↔ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)))))
2423anbi2d 740 . . . . . . . 8 (𝑧 = 𝐵 → (((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝐴)))) ↔ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))))
2524opabbidv 4716 . . . . . . 7 (𝑧 = 𝐵 → {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝐴))))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))})
26 bcthlem.5 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
2719, 25, 26ovmpt2g 6795 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (𝑋 × ℝ+) ∧ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))} ∈ V) → (𝐴𝐹𝐵) = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))})
2811, 27syl3an3 1361 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (𝑋 × ℝ+) ∧ 𝜑) → (𝐴𝐹𝐵) = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))})
29283expa 1265 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (𝑋 × ℝ+)) ∧ 𝜑) → (𝐴𝐹𝐵) = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))})
3029ancoms 469 . . 3 ((𝜑 ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (𝑋 × ℝ+))) → (𝐴𝐹𝐵) = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))})
3130eleq2d 2687 . 2 ((𝜑 ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (𝑋 × ℝ+))) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ 𝐶 ∈ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))}))
321sseli 3599 . . 3 (𝐶 ∈ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))} → 𝐶 ∈ (𝑋 × ℝ+))
33 simp1 1061 . . 3 ((𝐶 ∈ (𝑋 × ℝ+) ∧ (2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))) → 𝐶 ∈ (𝑋 × ℝ+))
34 1st2nd2 7205 . . . . . 6 (𝐶 ∈ (𝑋 × ℝ+) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
3534eleq1d 2686 . . . . 5 (𝐶 ∈ (𝑋 × ℝ+) → (𝐶 ∈ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))} ↔ ⟨(1st𝐶), (2nd𝐶)⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))}))
36 fvex 6201 . . . . . 6 (1st𝐶) ∈ V
37 fvex 6201 . . . . . 6 (2nd𝐶) ∈ V
38 eleq1 2689 . . . . . . . 8 (𝑥 = (1st𝐶) → (𝑥𝑋 ↔ (1st𝐶) ∈ 𝑋))
39 eleq1 2689 . . . . . . . 8 (𝑟 = (2nd𝐶) → (𝑟 ∈ ℝ+ ↔ (2nd𝐶) ∈ ℝ+))
4038, 39bi2anan9 917 . . . . . . 7 ((𝑥 = (1st𝐶) ∧ 𝑟 = (2nd𝐶)) → ((𝑥𝑋𝑟 ∈ ℝ+) ↔ ((1st𝐶) ∈ 𝑋 ∧ (2nd𝐶) ∈ ℝ+)))
41 simpr 477 . . . . . . . . 9 ((𝑥 = (1st𝐶) ∧ 𝑟 = (2nd𝐶)) → 𝑟 = (2nd𝐶))
4241breq1d 4663 . . . . . . . 8 ((𝑥 = (1st𝐶) ∧ 𝑟 = (2nd𝐶)) → (𝑟 < (1 / 𝐴) ↔ (2nd𝐶) < (1 / 𝐴)))
43 oveq12 6659 . . . . . . . . . 10 ((𝑥 = (1st𝐶) ∧ 𝑟 = (2nd𝐶)) → (𝑥(ball‘𝐷)𝑟) = ((1st𝐶)(ball‘𝐷)(2nd𝐶)))
4443fveq2d 6195 . . . . . . . . 9 ((𝑥 = (1st𝐶) ∧ 𝑟 = (2nd𝐶)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) = ((cls‘𝐽)‘((1st𝐶)(ball‘𝐷)(2nd𝐶))))
4544sseq1d 3632 . . . . . . . 8 ((𝑥 = (1st𝐶) ∧ 𝑟 = (2nd𝐶)) → (((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)) ↔ ((cls‘𝐽)‘((1st𝐶)(ball‘𝐷)(2nd𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))
4642, 45anbi12d 747 . . . . . . 7 ((𝑥 = (1st𝐶) ∧ 𝑟 = (2nd𝐶)) → ((𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))) ↔ ((2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((1st𝐶)(ball‘𝐷)(2nd𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)))))
4740, 46anbi12d 747 . . . . . 6 ((𝑥 = (1st𝐶) ∧ 𝑟 = (2nd𝐶)) → (((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)))) ↔ (((1st𝐶) ∈ 𝑋 ∧ (2nd𝐶) ∈ ℝ+) ∧ ((2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((1st𝐶)(ball‘𝐷)(2nd𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))))
4836, 37, 47opelopaba 4991 . . . . 5 (⟨(1st𝐶), (2nd𝐶)⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))} ↔ (((1st𝐶) ∈ 𝑋 ∧ (2nd𝐶) ∈ ℝ+) ∧ ((2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((1st𝐶)(ball‘𝐷)(2nd𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)))))
4935, 48syl6bb 276 . . . 4 (𝐶 ∈ (𝑋 × ℝ+) → (𝐶 ∈ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))} ↔ (((1st𝐶) ∈ 𝑋 ∧ (2nd𝐶) ∈ ℝ+) ∧ ((2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((1st𝐶)(ball‘𝐷)(2nd𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))))
5034eleq1d 2686 . . . . . . 7 (𝐶 ∈ (𝑋 × ℝ+) → (𝐶 ∈ (𝑋 × ℝ+) ↔ ⟨(1st𝐶), (2nd𝐶)⟩ ∈ (𝑋 × ℝ+)))
51 opelxp 5146 . . . . . . 7 (⟨(1st𝐶), (2nd𝐶)⟩ ∈ (𝑋 × ℝ+) ↔ ((1st𝐶) ∈ 𝑋 ∧ (2nd𝐶) ∈ ℝ+))
5250, 51syl6rbb 277 . . . . . 6 (𝐶 ∈ (𝑋 × ℝ+) → (((1st𝐶) ∈ 𝑋 ∧ (2nd𝐶) ∈ ℝ+) ↔ 𝐶 ∈ (𝑋 × ℝ+)))
5334fveq2d 6195 . . . . . . . . . 10 (𝐶 ∈ (𝑋 × ℝ+) → ((ball‘𝐷)‘𝐶) = ((ball‘𝐷)‘⟨(1st𝐶), (2nd𝐶)⟩))
54 df-ov 6653 . . . . . . . . . 10 ((1st𝐶)(ball‘𝐷)(2nd𝐶)) = ((ball‘𝐷)‘⟨(1st𝐶), (2nd𝐶)⟩)
5553, 54syl6reqr 2675 . . . . . . . . 9 (𝐶 ∈ (𝑋 × ℝ+) → ((1st𝐶)(ball‘𝐷)(2nd𝐶)) = ((ball‘𝐷)‘𝐶))
5655fveq2d 6195 . . . . . . . 8 (𝐶 ∈ (𝑋 × ℝ+) → ((cls‘𝐽)‘((1st𝐶)(ball‘𝐷)(2nd𝐶))) = ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)))
5756sseq1d 3632 . . . . . . 7 (𝐶 ∈ (𝑋 × ℝ+) → (((cls‘𝐽)‘((1st𝐶)(ball‘𝐷)(2nd𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)) ↔ ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))
5857anbi2d 740 . . . . . 6 (𝐶 ∈ (𝑋 × ℝ+) → (((2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((1st𝐶)(ball‘𝐷)(2nd𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))) ↔ ((2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)))))
5952, 58anbi12d 747 . . . . 5 (𝐶 ∈ (𝑋 × ℝ+) → ((((1st𝐶) ∈ 𝑋 ∧ (2nd𝐶) ∈ ℝ+) ∧ ((2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((1st𝐶)(ball‘𝐷)(2nd𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)))) ↔ (𝐶 ∈ (𝑋 × ℝ+) ∧ ((2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))))
60 3anass 1042 . . . . 5 ((𝐶 ∈ (𝑋 × ℝ+) ∧ (2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))) ↔ (𝐶 ∈ (𝑋 × ℝ+) ∧ ((2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)))))
6159, 60syl6bbr 278 . . . 4 (𝐶 ∈ (𝑋 × ℝ+) → ((((1st𝐶) ∈ 𝑋 ∧ (2nd𝐶) ∈ ℝ+) ∧ ((2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((1st𝐶)(ball‘𝐷)(2nd𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)))) ↔ (𝐶 ∈ (𝑋 × ℝ+) ∧ (2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)))))
6249, 61bitrd 268 . . 3 (𝐶 ∈ (𝑋 × ℝ+) → (𝐶 ∈ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))} ↔ (𝐶 ∈ (𝑋 × ℝ+) ∧ (2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)))))
6332, 33, 62pm5.21nii 368 . 2 (𝐶 ∈ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))} ↔ (𝐶 ∈ (𝑋 × ℝ+) ∧ (2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴))))
6431, 63syl6bb 276 1 ((𝜑 ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (𝑋 × ℝ+))) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ (𝐶 ∈ (𝑋 × ℝ+) ∧ (2nd𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  wss 3574  cop 4183   class class class wbr 4653  {copab 4712   × cxp 5112  dom cdm 5114  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  cr 9935  1c1 9937   < clt 10074   / cdiv 10684  cn 11020  +crp 11832  ballcbl 19733  MetOpencmopn 19736  clsccl 20822  CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rp 11833
This theorem is referenced by:  bcthlem2  23122  bcthlem3  23123  bcthlem4  23124
  Copyright terms: Public domain W3C validator