| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcthlem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for bcth 23126. Substitutions for the function |
| Ref | Expression |
|---|---|
| bcth.2 |
|
| bcthlem.4 |
|
| bcthlem.5 |
|
| Ref | Expression |
|---|---|
| bcthlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabssxp 5193 |
. . . . . . 7
| |
| 2 | bcthlem.4 |
. . . . . . . . 9
| |
| 3 | elfvdm 6220 |
. . . . . . . . 9
| |
| 4 | 2, 3 | syl 17 |
. . . . . . . 8
|
| 5 | reex 10027 |
. . . . . . . . 9
| |
| 6 | rpssre 11843 |
. . . . . . . . 9
| |
| 7 | 5, 6 | ssexi 4803 |
. . . . . . . 8
|
| 8 | xpexg 6960 |
. . . . . . . 8
| |
| 9 | 4, 7, 8 | sylancl 694 |
. . . . . . 7
|
| 10 | ssexg 4804 |
. . . . . . 7
| |
| 11 | 1, 9, 10 | sylancr 695 |
. . . . . 6
|
| 12 | oveq2 6658 |
. . . . . . . . . . 11
| |
| 13 | 12 | breq2d 4665 |
. . . . . . . . . 10
|
| 14 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 15 | 14 | difeq2d 3728 |
. . . . . . . . . . 11
|
| 16 | 15 | sseq2d 3633 |
. . . . . . . . . 10
|
| 17 | 13, 16 | anbi12d 747 |
. . . . . . . . 9
|
| 18 | 17 | anbi2d 740 |
. . . . . . . 8
|
| 19 | 18 | opabbidv 4716 |
. . . . . . 7
|
| 20 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 21 | 20 | difeq1d 3727 |
. . . . . . . . . . 11
|
| 22 | 21 | sseq2d 3633 |
. . . . . . . . . 10
|
| 23 | 22 | anbi2d 740 |
. . . . . . . . 9
|
| 24 | 23 | anbi2d 740 |
. . . . . . . 8
|
| 25 | 24 | opabbidv 4716 |
. . . . . . 7
|
| 26 | bcthlem.5 |
. . . . . . 7
| |
| 27 | 19, 25, 26 | ovmpt2g 6795 |
. . . . . 6
|
| 28 | 11, 27 | syl3an3 1361 |
. . . . 5
|
| 29 | 28 | 3expa 1265 |
. . . 4
|
| 30 | 29 | ancoms 469 |
. . 3
|
| 31 | 30 | eleq2d 2687 |
. 2
|
| 32 | 1 | sseli 3599 |
. . 3
|
| 33 | simp1 1061 |
. . 3
| |
| 34 | 1st2nd2 7205 |
. . . . . 6
| |
| 35 | 34 | eleq1d 2686 |
. . . . 5
|
| 36 | fvex 6201 |
. . . . . 6
| |
| 37 | fvex 6201 |
. . . . . 6
| |
| 38 | eleq1 2689 |
. . . . . . . 8
| |
| 39 | eleq1 2689 |
. . . . . . . 8
| |
| 40 | 38, 39 | bi2anan9 917 |
. . . . . . 7
|
| 41 | simpr 477 |
. . . . . . . . 9
| |
| 42 | 41 | breq1d 4663 |
. . . . . . . 8
|
| 43 | oveq12 6659 |
. . . . . . . . . 10
| |
| 44 | 43 | fveq2d 6195 |
. . . . . . . . 9
|
| 45 | 44 | sseq1d 3632 |
. . . . . . . 8
|
| 46 | 42, 45 | anbi12d 747 |
. . . . . . 7
|
| 47 | 40, 46 | anbi12d 747 |
. . . . . 6
|
| 48 | 36, 37, 47 | opelopaba 4991 |
. . . . 5
|
| 49 | 35, 48 | syl6bb 276 |
. . . 4
|
| 50 | 34 | eleq1d 2686 |
. . . . . . 7
|
| 51 | opelxp 5146 |
. . . . . . 7
| |
| 52 | 50, 51 | syl6rbb 277 |
. . . . . 6
|
| 53 | 34 | fveq2d 6195 |
. . . . . . . . . 10
|
| 54 | df-ov 6653 |
. . . . . . . . . 10
| |
| 55 | 53, 54 | syl6reqr 2675 |
. . . . . . . . 9
|
| 56 | 55 | fveq2d 6195 |
. . . . . . . 8
|
| 57 | 56 | sseq1d 3632 |
. . . . . . 7
|
| 58 | 57 | anbi2d 740 |
. . . . . 6
|
| 59 | 52, 58 | anbi12d 747 |
. . . . 5
|
| 60 | 3anass 1042 |
. . . . 5
| |
| 61 | 59, 60 | syl6bbr 278 |
. . . 4
|
| 62 | 49, 61 | bitrd 268 |
. . 3
|
| 63 | 32, 33, 62 | pm5.21nii 368 |
. 2
|
| 64 | 31, 63 | syl6bb 276 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-rp 11833 |
| This theorem is referenced by: bcthlem2 23122 bcthlem3 23123 bcthlem4 23124 |
| Copyright terms: Public domain | W3C validator |