MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem2 Structured version   Visualization version   GIF version

Theorem bcthlem2 23122
Description: Lemma for bcth 23126. The balls in the sequence form an inclusion chain. (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
bcthlem.4 (𝜑𝐷 ∈ (CMet‘𝑋))
bcthlem.5 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
bcthlem.6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
bcthlem.7 (𝜑𝑅 ∈ ℝ+)
bcthlem.8 (𝜑𝐶𝑋)
bcthlem.9 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
bcthlem.10 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
bcthlem.11 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
Assertion
Ref Expression
bcthlem2 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
Distinct variable groups:   𝑘,𝑛,𝑟,𝑥,𝑧   𝐶,𝑟,𝑥   𝑔,𝑘,𝑛,𝑟,𝑥,𝑧,𝐷   𝑔,𝐹,𝑘,𝑛,𝑟,𝑥,𝑧   𝑔,𝐽,𝑘,𝑛,𝑟,𝑥,𝑧   𝑔,𝑀,𝑘,𝑛,𝑟,𝑥,𝑧   𝜑,𝑘,𝑛,𝑟,𝑥,𝑧   𝑥,𝑅   𝑔,𝑋,𝑘,𝑛,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑧,𝑔,𝑘,𝑛)   𝑅(𝑧,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem bcthlem2
StepHypRef Expression
1 bcthlem.11 . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
2 oveq1 6657 . . . . . . . 8 (𝑘 = 𝑛 → (𝑘 + 1) = (𝑛 + 1))
32fveq2d 6195 . . . . . . 7 (𝑘 = 𝑛 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝑛 + 1)))
4 id 22 . . . . . . . 8 (𝑘 = 𝑛𝑘 = 𝑛)
5 fveq2 6191 . . . . . . . 8 (𝑘 = 𝑛 → (𝑔𝑘) = (𝑔𝑛))
64, 5oveq12d 6668 . . . . . . 7 (𝑘 = 𝑛 → (𝑘𝐹(𝑔𝑘)) = (𝑛𝐹(𝑔𝑛)))
73, 6eleq12d 2695 . . . . . 6 (𝑘 = 𝑛 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛))))
87rspccva 3308 . . . . 5 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))
91, 8sylan 488 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))
10 bcthlem.9 . . . . . 6 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
1110ffvelrnda 6359 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑔𝑛) ∈ (𝑋 × ℝ+))
12 bcth.2 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
13 bcthlem.4 . . . . . . 7 (𝜑𝐷 ∈ (CMet‘𝑋))
14 bcthlem.5 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
1512, 13, 14bcthlem1 23121 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (𝑔𝑛) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)))))
1615expr 643 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑔𝑛) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))))))
1711, 16mpd 15 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)))))
189, 17mpbid 222 . . 3 ((𝜑𝑛 ∈ ℕ) → ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))))
19 cmetmet 23084 . . . . . . . . . . . . 13 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
2013, 19syl 17 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (Met‘𝑋))
21 metxmet 22139 . . . . . . . . . . . 12 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2220, 21syl 17 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝑋))
2312mopntop 22245 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
2422, 23syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ Top)
2524adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → 𝐽 ∈ Top)
26 xp1st 7198 . . . . . . . . . . . 12 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋)
27 xp2nd 7199 . . . . . . . . . . . . 13 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ+)
2827rpxrd 11873 . . . . . . . . . . . 12 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*)
2926, 28jca 554 . . . . . . . . . . 11 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*))
30 blssm 22223 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋)
31303expb 1266 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*)) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋)
3222, 29, 31syl2an 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋)
33 1st2nd2 7205 . . . . . . . . . . . . 13 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (𝑔‘(𝑛 + 1)) = ⟨(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))⟩)
3433fveq2d 6195 . . . . . . . . . . . 12 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))⟩))
35 df-ov 6653 . . . . . . . . . . . 12 ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))⟩)
3634, 35syl6reqr 2675 . . . . . . . . . . 11 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))))
3736adantl 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))))
3812mopnuni 22246 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
3922, 38syl 17 . . . . . . . . . . 11 (𝜑𝑋 = 𝐽)
4039adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → 𝑋 = 𝐽)
4132, 37, 403sstr3d 3647 . . . . . . . . 9 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ 𝐽)
42 eqid 2622 . . . . . . . . . 10 𝐽 = 𝐽
4342sscls 20860 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ 𝐽) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))))
4425, 41, 43syl2anc 693 . . . . . . . 8 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))))
45 difss2 3739 . . . . . . . 8 (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
46 sstr2 3610 . . . . . . . 8 (((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
4744, 45, 46syl2im 40 . . . . . . 7 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
4847a1d 25 . . . . . 6 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))))
4948ex 450 . . . . 5 (𝜑 → ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))))
50493impd 1281 . . . 4 (𝜑 → (((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
5150adantr 481 . . 3 ((𝜑𝑛 ∈ ℕ) → (((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
5218, 51mpd 15 . 2 ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
5352ralrimiva 2966 1 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cdif 3571  wss 3574  cop 4183   cuni 4436   class class class wbr 4653  {copab 4712   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074   / cdiv 10684  cn 11020  +crp 11832  ∞Metcxmt 19731  Metcme 19732  ballcbl 19733  MetOpencmopn 19736  Topctop 20698  Clsdccld 20820  clsccl 20822  CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cls 20825  df-cmet 23055
This theorem is referenced by:  bcthlem3  23123  bcthlem4  23124
  Copyright terms: Public domain W3C validator