![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1177 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1177.2 | ⊢ (𝜓 ↔ (𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑋)) |
bnj1177.3 | ⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) |
bnj1177.9 | ⊢ ((𝜑 ∧ 𝜓) → 𝑅 FrSe 𝐴) |
bnj1177.13 | ⊢ ((𝜑 ∧ 𝜓) → 𝐵 ⊆ 𝐴) |
bnj1177.17 | ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
bnj1177 | ⊢ ((𝜑 ∧ 𝜓) → (𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1177.9 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑅 FrSe 𝐴) | |
2 | df-bnj15 30759 | . . . 4 ⊢ (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴)) | |
3 | 2 | simplbi 476 | . . 3 ⊢ (𝑅 FrSe 𝐴 → 𝑅 Fr 𝐴) |
4 | 1, 3 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝑅 Fr 𝐴) |
5 | bnj1177.3 | . . . 4 ⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) | |
6 | bnj1147 31062 | . . . . 5 ⊢ trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 | |
7 | ssinss1 3841 | . . . . 5 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴 |
9 | 5, 8 | eqsstri 3635 | . . 3 ⊢ 𝐶 ⊆ 𝐴 |
10 | 9 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ⊆ 𝐴) |
11 | bnj1177.17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐴) | |
12 | bnj906 31000 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) | |
13 | 1, 11, 12 | syl2anc 693 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
14 | ssrin 3838 | . . . . . 6 ⊢ ( pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) → ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
16 | bnj1177.13 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝐵 ⊆ 𝐴) | |
17 | bnj1177.2 | . . . . . . . . . 10 ⊢ (𝜓 ↔ (𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑋)) | |
18 | 17 | simp2bi 1077 | . . . . . . . . 9 ⊢ (𝜓 → 𝑦 ∈ 𝐵) |
19 | 18 | adantl 482 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) |
20 | 16, 19 | sseldd 3604 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐴) |
21 | 17 | simp3bi 1078 | . . . . . . . 8 ⊢ (𝜓 → 𝑦𝑅𝑋) |
22 | 21 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑦𝑅𝑋) |
23 | bnj1152 31066 | . . . . . . 7 ⊢ (𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋)) | |
24 | 20, 22, 23 | sylanbrc 698 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ pred(𝑋, 𝐴, 𝑅)) |
25 | 24, 19 | elind 3798 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
26 | 15, 25 | sseldd 3604 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
27 | ne0i 3921 | . . . 4 ⊢ (𝑦 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅) | |
28 | 26, 27 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅) |
29 | 5 | neeq1i 2858 | . . 3 ⊢ (𝐶 ≠ ∅ ↔ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅) |
30 | 28, 29 | sylibr 224 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ≠ ∅) |
31 | bnj893 30998 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V) | |
32 | 1, 11, 31 | syl2anc 693 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → trCl(𝑋, 𝐴, 𝑅) ∈ V) |
33 | inex1g 4801 | . . . 4 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ∈ V → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ∈ V) | |
34 | 5, 33 | syl5eqel 2705 | . . 3 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ∈ V → 𝐶 ∈ V) |
35 | 32, 34 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ∈ V) |
36 | 4, 10, 30, 35 | bnj951 30846 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 class class class wbr 4653 Fr wfr 5070 ∧ w-bnj17 30752 predc-bnj14 30754 Se w-bnj13 30756 FrSe w-bnj15 30758 trClc-bnj18 30760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 ax-inf2 8538 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-1o 7560 df-bnj17 30753 df-bnj14 30755 df-bnj13 30757 df-bnj15 30759 df-bnj18 30761 |
This theorem is referenced by: bnj1190 31076 |
Copyright terms: Public domain | W3C validator |