Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1190 Structured version   Visualization version   GIF version

Theorem bnj1190 31076
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1190.1 (𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))
bnj1190.2 (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
Assertion
Ref Expression
bnj1190 ((𝜑𝜓) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
Distinct variable groups:   𝑤,𝐵,𝑥,𝑧   𝑦,𝐵,𝑥,𝑧   𝑤,𝑅,𝑥,𝑧   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem bnj1190
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1190.1 . . . . . . 7 (𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))
21simp2bi 1077 . . . . . 6 (𝜑𝐵𝐴)
32adantr 481 . . . . 5 ((𝜑𝜓) → 𝐵𝐴)
4 eqid 2622 . . . . . 6 ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) = ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)
5 bnj1190.2 . . . . . . . . 9 (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
61simp1bi 1076 . . . . . . . . . 10 (𝜑𝑅 FrSe 𝐴)
76adantr 481 . . . . . . . . 9 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
85simp1bi 1076 . . . . . . . . . 10 (𝜓𝑥𝐵)
9 ssel2 3598 . . . . . . . . . 10 ((𝐵𝐴𝑥𝐵) → 𝑥𝐴)
102, 8, 9syl2an 494 . . . . . . . . 9 ((𝜑𝜓) → 𝑥𝐴)
115, 4, 7, 3, 10bnj1177 31074 . . . . . . . 8 ((𝜑𝜓) → (𝑅 Fr 𝐴 ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴 ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅ ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ∈ V))
12 bnj1154 31067 . . . . . . . 8 ((𝑅 Fr 𝐴 ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴 ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅ ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ∈ V) → ∃𝑢 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)∀𝑣 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ¬ 𝑣𝑅𝑢)
1311, 12bnj1176 31073 . . . . . . 7 𝑢𝑣((𝜑𝜓) → (𝑢 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ∧ (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) → (𝑣𝑅𝑢 → ¬ 𝑣 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)))))
14 biid 251 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ (𝑣𝐴𝑣𝑅𝑢)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ (𝑣𝐴𝑣𝑅𝑢)))
15 biid 251 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) ↔ ((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴))
164, 14, 15bnj1175 31072 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) → (𝑣𝑅𝑢𝑣 ∈ trCl(𝑥, 𝐴, 𝑅)))
174, 13, 16bnj1174 31071 . . . . . 6 𝑢𝑣((𝜑𝜓) → ((𝜑𝜓𝑢 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)) ∧ (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) → (𝑣𝑅𝑢 → ¬ 𝑣𝐵))))
184, 15, 7, 10bnj1173 31070 . . . . . 6 ((𝜑𝜓𝑢 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)) → (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) ↔ 𝑣𝐴))
194, 17, 18bnj1172 31069 . . . . 5 𝑢𝑣((𝜑𝜓) → (𝑢𝐵 ∧ (𝑣𝐴 → (𝑣𝑅𝑢 → ¬ 𝑣𝐵))))
203, 19bnj1171 31068 . . . 4 𝑢𝑣((𝜑𝜓) → (𝑢𝐵 ∧ (𝑣𝐵 → ¬ 𝑣𝑅𝑢)))
2120bnj1186 31075 . . 3 ((𝜑𝜓) → ∃𝑢𝐵𝑣𝐵 ¬ 𝑣𝑅𝑢)
2221bnj1185 30864 . 2 ((𝜑𝜓) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
2322bnj1185 30864 1 ((𝜑𝜓) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wne 2794  wral 2912  wrex 2913  cin 3573  wss 3574  c0 3915   class class class wbr 4653   FrSe w-bnj15 30758   trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761  df-bnj19 30763
This theorem is referenced by:  bnj1189  31077
  Copyright terms: Public domain W3C validator