Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj601 Structured version   Visualization version   GIF version

Theorem bnj601 30990
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj601.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj601.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj601.3 𝐷 = (ω ∖ {∅})
bnj601.4 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
bnj601.5 (𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))
Assertion
Ref Expression
bnj601 (𝑛 ≠ 1𝑜 → ((𝑛𝐷𝜃) → 𝜒))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛,𝑦   𝐷,𝑓,𝑖   𝑅,𝑓,𝑖,𝑚,𝑛,𝑦   𝑥,𝑓,𝑚,𝑛   𝜑,𝑖,𝑚   𝜓,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜒(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜃(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝐴(𝑥)   𝐷(𝑥,𝑦,𝑚,𝑛)   𝑅(𝑥)

Proof of Theorem bnj601
Dummy variables 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj601.1 . 2 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
2 bnj601.2 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj601.3 . 2 𝐷 = (ω ∖ {∅})
4 bnj601.4 . 2 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
5 bnj601.5 . 2 (𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))
6 biid 251 . 2 ([𝑚 / 𝑛]𝜑[𝑚 / 𝑛]𝜑)
7 biid 251 . 2 ([𝑚 / 𝑛]𝜓[𝑚 / 𝑛]𝜓)
8 biid 251 . 2 ([𝑚 / 𝑛]𝜒[𝑚 / 𝑛]𝜒)
9 bnj602 30985 . . . . . . 7 (𝑦 = 𝑧 → pred(𝑦, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅))
109cbviunv 4559 . . . . . 6 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)
1110opeq2i 4406 . . . . 5 𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩ = ⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩
1211sneqi 4188 . . . 4 {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} = {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}
1312uneq2i 3764 . . 3 (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})
14 dfsbcq 3437 . . 3 ((𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) → ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜑[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜑))
1513, 14ax-mp 5 . 2 ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜑[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜑)
16 dfsbcq 3437 . . 3 ((𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) → ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜓[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜓))
1713, 16ax-mp 5 . 2 ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜓[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜓)
18 dfsbcq 3437 . . 3 ((𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) → ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜒[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜒))
1913, 18ax-mp 5 . 2 ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜒[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜒)
2013eqcomi 2631 . 2 (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
21 biid 251 . 2 ((𝑓 Fn 𝑚[𝑚 / 𝑛]𝜑[𝑚 / 𝑛]𝜓) ↔ (𝑓 Fn 𝑚[𝑚 / 𝑛]𝜑[𝑚 / 𝑛]𝜓))
22 biid 251 . 2 ((𝑚𝐷𝑛 = suc 𝑚𝑝𝑚) ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
23 biid 251 . 2 ((𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
24 biid 251 . 2 ((𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖) ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
25 biid 251 . 2 ((𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖) ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
26 eqid 2622 . 2 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
27 eqid 2622 . 2 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
28 eqid 2622 . 2 𝑦 ∈ ((𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})‘𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ ((𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})‘𝑖) pred(𝑦, 𝐴, 𝑅)
29 eqid 2622 . 2 𝑦 ∈ ((𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})‘𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ ((𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})‘𝑝) pred(𝑦, 𝐴, 𝑅)
301, 2, 3, 4, 5, 6, 7, 8, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 20bnj600 30989 1 (𝑛 ≠ 1𝑜 → ((𝑛𝐷𝜃) → 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  ∃!weu 2470  wne 2794  wral 2912  [wsbc 3435  cdif 3571  cun 3572  c0 3915  {csn 4177  cop 4183   ciun 4520   class class class wbr 4653   E cep 5028  suc csuc 5725   Fn wfn 5883  cfv 5888  ωcom 7065  1𝑜c1o 7553  w-bnj17 30752   predc-bnj14 30754   FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj852  30991
  Copyright terms: Public domain W3C validator