![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ficardun2 | Structured version Visualization version GIF version |
Description: The cardinality of the union of finite sets is at most the ordinal sum of their cardinalities. (Contributed by Mario Carneiro, 5-Feb-2013.) |
Ref | Expression |
---|---|
ficardun2 | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ ((card‘𝐴) +𝑜 (card‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncdadom 8993 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵)) | |
2 | finnum 8774 | . . . . 5 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | |
3 | finnum 8774 | . . . . 5 ⊢ (𝐵 ∈ Fin → 𝐵 ∈ dom card) | |
4 | cardacda 9020 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +𝑜 (card‘𝐵))) | |
5 | 2, 3, 4 | syl2an 494 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +𝑜 (card‘𝐵))) |
6 | domentr 8015 | . . . 4 ⊢ (((𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵) ∧ (𝐴 +𝑐 𝐵) ≈ ((card‘𝐴) +𝑜 (card‘𝐵))) → (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +𝑜 (card‘𝐵))) | |
7 | 1, 5, 6 | syl2anc 693 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +𝑜 (card‘𝐵))) |
8 | unfi 8227 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
9 | finnum 8774 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → (𝐴 ∪ 𝐵) ∈ dom card) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ dom card) |
11 | ficardom 8787 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) | |
12 | ficardom 8787 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ∈ ω) | |
13 | nnacl 7691 | . . . . . 6 ⊢ (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +𝑜 (card‘𝐵)) ∈ ω) | |
14 | 11, 12, 13 | syl2an 494 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +𝑜 (card‘𝐵)) ∈ ω) |
15 | nnon 7071 | . . . . 5 ⊢ (((card‘𝐴) +𝑜 (card‘𝐵)) ∈ ω → ((card‘𝐴) +𝑜 (card‘𝐵)) ∈ On) | |
16 | onenon 8775 | . . . . 5 ⊢ (((card‘𝐴) +𝑜 (card‘𝐵)) ∈ On → ((card‘𝐴) +𝑜 (card‘𝐵)) ∈ dom card) | |
17 | 14, 15, 16 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +𝑜 (card‘𝐵)) ∈ dom card) |
18 | carddom2 8803 | . . . 4 ⊢ (((𝐴 ∪ 𝐵) ∈ dom card ∧ ((card‘𝐴) +𝑜 (card‘𝐵)) ∈ dom card) → ((card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +𝑜 (card‘𝐵))) ↔ (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +𝑜 (card‘𝐵)))) | |
19 | 10, 17, 18 | syl2anc 693 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +𝑜 (card‘𝐵))) ↔ (𝐴 ∪ 𝐵) ≼ ((card‘𝐴) +𝑜 (card‘𝐵)))) |
20 | 7, 19 | mpbird 247 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ (card‘((card‘𝐴) +𝑜 (card‘𝐵)))) |
21 | cardnn 8789 | . . 3 ⊢ (((card‘𝐴) +𝑜 (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = ((card‘𝐴) +𝑜 (card‘𝐵))) | |
22 | 14, 21 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +𝑜 (card‘𝐵))) = ((card‘𝐴) +𝑜 (card‘𝐵))) |
23 | 20, 22 | sseqtrd 3641 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ ((card‘𝐴) +𝑜 (card‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∪ cun 3572 ⊆ wss 3574 class class class wbr 4653 dom cdm 5114 Oncon0 5723 ‘cfv 5888 (class class class)co 6650 ωcom 7065 +𝑜 coa 7557 ≈ cen 7952 ≼ cdom 7953 Fincfn 7955 cardccrd 8761 +𝑐 ccda 8989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |