MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephinit Structured version   Visualization version   GIF version

Theorem alephinit 8918
Description: An infinite initial ordinal is characterized by the property of being initial - that is, it is a subset of any dominating ordinal. (Contributed by Jeff Hankins, 29-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
alephinit ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ∈ ran ℵ ↔ ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem alephinit
StepHypRef Expression
1 isinfcard 8915 . . . . 5 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ)
21bicomi 214 . . . 4 (𝐴 ∈ ran ℵ ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
32baib 944 . . 3 (ω ⊆ 𝐴 → (𝐴 ∈ ran ℵ ↔ (card‘𝐴) = 𝐴))
43adantl 482 . 2 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ∈ ran ℵ ↔ (card‘𝐴) = 𝐴))
5 onenon 8775 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ∈ dom card)
65adantr 481 . . . . . . 7 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ∈ dom card)
7 onenon 8775 . . . . . . 7 (𝑥 ∈ On → 𝑥 ∈ dom card)
8 carddom2 8803 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝑥 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝑥) ↔ 𝐴𝑥))
96, 7, 8syl2an 494 . . . . . 6 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) ⊆ (card‘𝑥) ↔ 𝐴𝑥))
10 cardonle 8783 . . . . . . . 8 (𝑥 ∈ On → (card‘𝑥) ⊆ 𝑥)
1110adantl 482 . . . . . . 7 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → (card‘𝑥) ⊆ 𝑥)
12 sstr 3611 . . . . . . . 8 (((card‘𝐴) ⊆ (card‘𝑥) ∧ (card‘𝑥) ⊆ 𝑥) → (card‘𝐴) ⊆ 𝑥)
1312expcom 451 . . . . . . 7 ((card‘𝑥) ⊆ 𝑥 → ((card‘𝐴) ⊆ (card‘𝑥) → (card‘𝐴) ⊆ 𝑥))
1411, 13syl 17 . . . . . 6 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) ⊆ (card‘𝑥) → (card‘𝐴) ⊆ 𝑥))
159, 14sylbird 250 . . . . 5 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → (𝐴𝑥 → (card‘𝐴) ⊆ 𝑥))
16 sseq1 3626 . . . . . 6 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ⊆ 𝑥𝐴𝑥))
1716imbi2d 330 . . . . 5 ((card‘𝐴) = 𝐴 → ((𝐴𝑥 → (card‘𝐴) ⊆ 𝑥) ↔ (𝐴𝑥𝐴𝑥)))
1815, 17syl5ibcom 235 . . . 4 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) = 𝐴 → (𝐴𝑥𝐴𝑥)))
1918ralrimdva 2969 . . 3 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ((card‘𝐴) = 𝐴 → ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
20 oncardid 8782 . . . . . . 7 (𝐴 ∈ On → (card‘𝐴) ≈ 𝐴)
21 ensym 8005 . . . . . . 7 ((card‘𝐴) ≈ 𝐴𝐴 ≈ (card‘𝐴))
22 endom 7982 . . . . . . 7 (𝐴 ≈ (card‘𝐴) → 𝐴 ≼ (card‘𝐴))
2320, 21, 223syl 18 . . . . . 6 (𝐴 ∈ On → 𝐴 ≼ (card‘𝐴))
2423adantr 481 . . . . 5 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ≼ (card‘𝐴))
25 cardon 8770 . . . . . 6 (card‘𝐴) ∈ On
26 breq2 4657 . . . . . . . 8 (𝑥 = (card‘𝐴) → (𝐴𝑥𝐴 ≼ (card‘𝐴)))
27 sseq2 3627 . . . . . . . 8 (𝑥 = (card‘𝐴) → (𝐴𝑥𝐴 ⊆ (card‘𝐴)))
2826, 27imbi12d 334 . . . . . . 7 (𝑥 = (card‘𝐴) → ((𝐴𝑥𝐴𝑥) ↔ (𝐴 ≼ (card‘𝐴) → 𝐴 ⊆ (card‘𝐴))))
2928rspcv 3305 . . . . . 6 ((card‘𝐴) ∈ On → (∀𝑥 ∈ On (𝐴𝑥𝐴𝑥) → (𝐴 ≼ (card‘𝐴) → 𝐴 ⊆ (card‘𝐴))))
3025, 29ax-mp 5 . . . . 5 (∀𝑥 ∈ On (𝐴𝑥𝐴𝑥) → (𝐴 ≼ (card‘𝐴) → 𝐴 ⊆ (card‘𝐴)))
3124, 30syl5com 31 . . . 4 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (∀𝑥 ∈ On (𝐴𝑥𝐴𝑥) → 𝐴 ⊆ (card‘𝐴)))
32 cardonle 8783 . . . . . . 7 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
3332adantr 481 . . . . . 6 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (card‘𝐴) ⊆ 𝐴)
3433biantrurd 529 . . . . 5 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ⊆ (card‘𝐴) ↔ ((card‘𝐴) ⊆ 𝐴𝐴 ⊆ (card‘𝐴))))
35 eqss 3618 . . . . 5 ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴𝐴 ⊆ (card‘𝐴)))
3634, 35syl6bbr 278 . . . 4 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴))
3731, 36sylibd 229 . . 3 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (∀𝑥 ∈ On (𝐴𝑥𝐴𝑥) → (card‘𝐴) = 𝐴))
3819, 37impbid 202 . 2 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ((card‘𝐴) = 𝐴 ↔ ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
394, 38bitrd 268 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ∈ ran ℵ ↔ ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574   class class class wbr 4653  dom cdm 5114  ran crn 5115  Oncon0 5723  cfv 5888  ωcom 7065  cen 7952  cdom 7953  cardccrd 8761  cale 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator