![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccatfval | Structured version Visualization version GIF version |
Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
ccatfval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((#‘𝑆) + (#‘𝑇))) ↦ if(𝑥 ∈ (0..^(#‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (#‘𝑆)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3212 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
2 | elex 3212 | . 2 ⊢ (𝑇 ∈ 𝑊 → 𝑇 ∈ V) | |
3 | fveq2 6191 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (#‘𝑠) = (#‘𝑆)) | |
4 | fveq2 6191 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (#‘𝑡) = (#‘𝑇)) | |
5 | 3, 4 | oveqan12d 6669 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((#‘𝑠) + (#‘𝑡)) = ((#‘𝑆) + (#‘𝑇))) |
6 | 5 | oveq2d 6666 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (0..^((#‘𝑠) + (#‘𝑡))) = (0..^((#‘𝑆) + (#‘𝑇)))) |
7 | 3 | oveq2d 6666 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (0..^(#‘𝑠)) = (0..^(#‘𝑆))) |
8 | 7 | eleq2d 2687 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑥 ∈ (0..^(#‘𝑠)) ↔ 𝑥 ∈ (0..^(#‘𝑆)))) |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑥 ∈ (0..^(#‘𝑠)) ↔ 𝑥 ∈ (0..^(#‘𝑆)))) |
10 | fveq1 6190 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑠‘𝑥) = (𝑆‘𝑥)) | |
11 | 10 | adantr 481 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠‘𝑥) = (𝑆‘𝑥)) |
12 | simpr 477 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → 𝑡 = 𝑇) | |
13 | 3 | oveq2d 6666 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑥 − (#‘𝑠)) = (𝑥 − (#‘𝑆))) |
14 | 13 | adantr 481 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑥 − (#‘𝑠)) = (𝑥 − (#‘𝑆))) |
15 | 12, 14 | fveq12d 6197 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑡‘(𝑥 − (#‘𝑠))) = (𝑇‘(𝑥 − (#‘𝑆)))) |
16 | 9, 11, 15 | ifbieq12d 4113 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → if(𝑥 ∈ (0..^(#‘𝑠)), (𝑠‘𝑥), (𝑡‘(𝑥 − (#‘𝑠)))) = if(𝑥 ∈ (0..^(#‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (#‘𝑆))))) |
17 | 6, 16 | mpteq12dv 4733 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑥 ∈ (0..^((#‘𝑠) + (#‘𝑡))) ↦ if(𝑥 ∈ (0..^(#‘𝑠)), (𝑠‘𝑥), (𝑡‘(𝑥 − (#‘𝑠))))) = (𝑥 ∈ (0..^((#‘𝑆) + (#‘𝑇))) ↦ if(𝑥 ∈ (0..^(#‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (#‘𝑆)))))) |
18 | df-concat 13301 | . . 3 ⊢ ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((#‘𝑠) + (#‘𝑡))) ↦ if(𝑥 ∈ (0..^(#‘𝑠)), (𝑠‘𝑥), (𝑡‘(𝑥 − (#‘𝑠)))))) | |
19 | ovex 6678 | . . . 4 ⊢ (0..^((#‘𝑆) + (#‘𝑇))) ∈ V | |
20 | 19 | mptex 6486 | . . 3 ⊢ (𝑥 ∈ (0..^((#‘𝑆) + (#‘𝑇))) ↦ if(𝑥 ∈ (0..^(#‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (#‘𝑆))))) ∈ V |
21 | 17, 18, 20 | ovmpt2a 6791 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((#‘𝑆) + (#‘𝑇))) ↦ if(𝑥 ∈ (0..^(#‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (#‘𝑆)))))) |
22 | 1, 2, 21 | syl2an 494 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((#‘𝑆) + (#‘𝑇))) ↦ if(𝑥 ∈ (0..^(#‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (#‘𝑆)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ifcif 4086 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 0cc0 9936 + caddc 9939 − cmin 10266 ..^cfzo 12465 #chash 13117 ++ cconcat 13293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-concat 13301 |
This theorem is referenced by: ccatcl 13359 ccatlen 13360 ccatval1 13361 ccatval2 13362 ccatvalfn 13365 ccatalpha 13375 repswccat 13532 ccatco 13581 ofccat 13708 ccatmulgnn0dir 30619 |
Copyright terms: Public domain | W3C validator |